Contents

Opening Remarks xi

Part I: Algebra

1. Rudiments of Commutative Algebra 1
 §1 Basic Constructions 1
 §2 Noetherian Rings 3
 §3 Modules 5
 §4 Integral Extensions 7

2. Primary Decompositions of Modules 13
 §1 Associated Primes 13
 §2 Primary Decomposition 16
 §3 Graded Rings and Modules 19
 §4 Primary Decomposition in Graded Modules 23

3. Dimension Theory 26
 §1 Hilbert Function of a Graded Module 26
 §2 Hilbert-Samuel Polynomials of a Local Ring 28
 §3 The Dimension of a Local Ring 30
 §4 The Dimension of an Affine Algebra 34
 §5 The Dimension of a Graded Ring 35

4. Cohen-Macaulay Modules 40
 §1 The Notion of Depth 40
 §2 Cohen-Macaulay Modules 43
 §3 Macaulay’s Theorem 46
 §4 Graded Depth 48

5. Local Cohomology 55
 §1 Graded modules over Standard \(k \)-algebras 55
 §2 Cochain Complexes 56
 §3 Local Cohomology 58
 §4 Local Cohomology via Čech Complex 58

6. Face Rings of Simplicial Complexes 66
 §1 Hilbert Series of Face Rings 66
 §2 Shellable Complexes are Cohen-Macaulay 71
Contents

July

1. Upper Bound Theorem 76
 §1 Reisner’s Theorem 76
 §2 Stanley’s Proof of UBC 78

Part II: Combinatorics

8. Partially Ordered Sets 81
 §1 Posets 81
 §2 Möbius Inversion 83
 §3 Computation of Möbius Functions 86
 §4 Eulerian Posets 90
 §5 Lexicographically Shellable Posets 94
 §6 Poset Ring 99

9. Rotations of Graphs 107
 §1 Introduction and Preliminary Results 107
 §2 Rotations and Triangulations of a Graph 108
 §3 Combinatorial Genus and Topological Genus 113

Part III: Topology

10. Convex Polytopes 117
 §1 Some Basic Results on Convex Sets 117
 §2 Face Poset of a Closed Convex Set 121
 §3 Eulerian Property 128
 §4 Special Classes of Polytopes 131
 §5 Shellable Complexes 134
 §6 Topological Aspects of Shellability 137
 §7 Boundary Complex of a Polytope 139
 §8 An Example 141

11. Simplicial Complexes 145
 §1 Basic Definitions 145
 §2 Geometric Realization 146
 §3 Barycentric Subdivision 149
 §4 Simplicial Approximation 152
 §5 Links and Stars 153

12. Homology 156
 §1 Chain Complexes and Homology 156
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>§2 Singular Homology</td>
<td>159</td>
</tr>
<tr>
<td>§3 Excision</td>
<td>163</td>
</tr>
<tr>
<td>§4 Simplicial Homology of a Simplicial Complex</td>
<td>165</td>
</tr>
<tr>
<td>§5 Topological Invariance of Reisner's Condition</td>
<td>166</td>
</tr>
<tr>
<td>13. Triangulations of Surfaces</td>
<td>169</td>
</tr>
<tr>
<td>§1 Introduction</td>
<td>169</td>
</tr>
<tr>
<td>§2 Existence of Triangulations of Compact Surfaces</td>
<td>170</td>
</tr>
<tr>
<td>§3 Classification</td>
<td>174</td>
</tr>
<tr>
<td>14. Minimal Triangulations of Manifolds</td>
<td>180</td>
</tr>
<tr>
<td>§1 Introduction</td>
<td>180</td>
</tr>
<tr>
<td>§2 Surfaces</td>
<td>182</td>
</tr>
<tr>
<td>References</td>
<td>185</td>
</tr>
<tr>
<td>Appendices</td>
<td></td>
</tr>
<tr>
<td>A. Number of Faces of a Simplicial Polytope</td>
<td>187</td>
</tr>
<tr>
<td>B. Applications of Gröbner Bases to Combinatorics</td>
<td>195</td>
</tr>
<tr>
<td>Epilogue</td>
<td>207</td>
</tr>
</tbody>
</table>