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1. Introduction

Let N = {0, 1, 2, . . . } and N⇤ = {1, 2, . . . }. It is a very ancient
result, may be already known by Euler, that for < 2 N⇤

⇢<(I) :=
1’
:=1

:
<

I
: =

Õ
<

==1
⇥
<

=

⇤
I
=

(1 � I)<+1 , (1.1)

where
⇥
<

=

⇤
are the Eulerian numbers given by

h
<

=

i
:=

=�1’
8=0

(�1)8
✓
< + 1
8

◆
(= � 8)< (=  <).

For a proof see [5], [6] as well as [1] and [7, p.143]. Note
that

⇥
<

=

⇤
2 N, as the binomial coe�cients have this propertry.

Let us point out that the Eulerian numbers should not to be
mixed up with the Euler numbers, both are quite di↵erent
classes of numbers (see [7]). Eulerian numbers also appear
in combinatorics counting certain permutations (see [3] or [7,
p. 144f]). Properties of the Eulerian numbers are given in [5],
[3], [7] and are of course listed on wikipedia. One important
one is the symmetry:

h
<

=

i
=

h
<

< � = + 1

i
. (1.2)

The intention of our small note is to give for < 2 N a
similar representation of the finite Taylor sums

⇢=,<(I) :=
=’
:=1

:
<

I
:

of the functions ⇢<. We call these functions generalized
Eulerian power sums, as they generalize of course the
numbers

Õ
=

:=1 :
<.

On Mathstackexchange [9] it was asked for a general
formula for ⇢=,<. For instance, as every undergraduate
student of mathematics should know,

⇢=,0(I) =
I � I=+1

1 � I .

As well illustrated in [9], the explicit formulas get very
di�cult with increasing power <. For instance

⇢=,1(I) =
=I
=+2 � (= + 1)I=+1 + I

(1 � I)2 ,

and

⇢=,2(I)

=
�=2

I
=+3 + (2=2 + 2= � 1)I=+2 � (= � 1)2

I
=+1 + I2 + I

(1 � I)3 .

When dealing with this question, I was surprised that one
could readily give such a general formula, and I posted this
on [9] under my abbreviated prename “Ray”. Here I present
the details, hoping that the readers of these Mathematics
Newsletters of the Ramanujan Mathematical society will
enjoy seeing how to develop such a formula.

2. The explicit value of the generalized

Eulerian sums

Our proof will be based on the method given in [5], which
amounts in using the di↵erence operator ⇡ ?. That is, let
(2=)=2Z be a double sided sequence of real numbers and put

⇡
0
2= = 2=, ⇡

1
2= = 2= � 2=�1
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⇡
?+1
2= = ⇡1(⇡ ?

2=), (? 2 N⇤).

It is easily seen by induction (and of course well known)
that

⇡
?

2= =
?’
9=0

(�1) 9
✓
?

9

◆
2=� 9 . (2.1)

The crux is now the following fact, which is easily
proven by induction, too: If 2�= = 0 for = 2 N⇤ and
lim sup

=!1
=
p
|2= |  1 then

(1 � I) ?
1’
==0

2=I
= =

1’
==0

(⇡ ?

2=)I=, |I | < 1. (2.2)

We are now ready to give the value for the generalized
Eulerian sums.

Theorem 2.1. Let < 2 N. Then, for I 2 C\{1},
=’
:=1

:
<

I
: =

1
(1 � I)<+1

⇥ ©≠
´

max{1,<}’
9=0

(0 9 � 1 9 ,=)I 9 + (1 � I=+1)
max{1,<}’

9=0

1 9 ,=I
9™Æ
¨
,

(2.3)

where 00 := 00(<) := 0,

0 9 := 0 9 (<) :=
9�1’
8=0

(�1)8
✓
< + 1
8

◆
( 9�8)< =


<

9

�
, ( 9 2 N⇤),

and

1 9 ,= := 1 9 ,= (<) :=
9’
8=0

(�1)8
✓
< + 1
8

◆
( 9�8+1+=)<, ( 9 2 N).

For technical reasons, and in order to better compare the
0 9 with the 1 9 ,=, we replaced here

h
<

9

i
by 0 9 (these are the

Eulerian numbers). Note, though, that all the coe�cients 0 9
and 1 9 ,= depend on the parameter <.

Proof. We first take |I | < 1. Then we may write
⇢=,<(I) as

=’
:=1

:
<

I
: =

1’
:=1

:
<

I
: �

1’
:==+1

:
<

I
:

=
1’
:=1

:
<

I
: � I=+1

1’
:=0

(: + = + 1)<I: .

Hence, by (2.2),

(1 � I)<+1
=’
:=1

:
<

I
:

= (1 � I)<+1
1’
:=1

:
<

I
: � I=+1(1 � I)<+1

1’
:=0

(: + = + 1)<I:

= (1 � I)<+1
⇢<(I) � I=+1

1’
:=0

(⇡<+1
2:)I: ,

where 2: =
8>><
>>:
(: + = + 1)< if : 2 N
0 if : < 0.

By equation (2.1)

1:,= := ⇡<+1
2: =

:’
8=0

(�1)8
✓
< + 1
8

◆
(: � 8 + 1 + =)<.

Now let < � 1. Since for positive indices 2: is a
polynomial of degree <, ⇡<+1(2:) = 0 for : > <, and by
using (1.1), we conclude that

(1 � I)<+1
=’
:=1

:
<

I
: =

<’
:=0

0:I
: � I=+1

<’
:=0

1:,=I
:

, (2.4)

from which we deduce the assertion of the theorem whenever
< � 1. If < = 0, then

0: (0) =
:�1’
8=0

(�1)8
✓
1
8

◆
(: � 8)0 =

8>><
>>:

1 if : = 1

0 if : � 2.

and

1:,= (0) =
:’
8=0

(�1)8
✓
1
8

◆
(: � 8 + 1 + =)0 =

8>><
>>:

1 if : = 0

0 if : � 1.

Hence the right hand side in (2.3) equals I�I=+1

1�I , which
coincides with ⇢=,0(I).

Thus formula (2.3) holds for |I | < 1. The unicity theorem
for holomorphic functions now shows the validity of the
formula for all I 2 C, I < 1. ⇤

Remark 2.2. Here we make the following observations (note
that 0: = 0: (<) =

⇥
<

:

⇤
and 1:,= = 1:,= (<)):

(1) By taking I = 1 in (2.4), we see that for every = 2 N⇤ and
< 2 N⇤,

<’
:=0

1:,= (<) =
<’
:=0

0: (<) = <!,

where the last equality comes from [5, formula (3)].
An amazing fact!
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(2) Recall that for =,< 2 N⇤ and
⇥
<

0
⇤

:= 0,

⇢=,<(1) =
=’
:=1

:
< =

<’
9=0


<

9

� ✓
= + 9
< + 1

◆
.

In fact, by Wopitzky’s formula (see [8], [3, p. 255] 1, and
[7, p. 139]) for < 2 N⇤ and G 2 R,

G
< =

<’
9=0


<

9

� ✓
G + 9 � 1

<

◆
.

Hence

=’
:=1

:
< =

=’
:=1

<’
9=0


<

9

� ✓
: + 9 � 1

<

◆

=
<’
9=0


<

9

�
=’
:=1

✓
: + 9 � 1

<

◆

=
<’
9=0


<

9

� ✓
= + 9
< + 1

◆
.

A similar formula for ⇢=,<(1) in terms of the Stirling
numbers of the second kind is given e.g. in [2, p. 456]
respectively [7, p. 212], and the standard Bernoulli
formula is nicely presented in [7, p. 211].

By the way, a nice natural proof (similar to that in
[4]) of Worpitzky’s formula can be given as follows,
by posing

h
<

9

i
= 0 if < 2 N⇤ and 9 > <:

1’
:=1

:
<

I
:

(1.1)
=

Õ
<

==1
⇥
<

=

⇤
I
=

(1 � I)<+1

=

 
<’
==0

h
<

=

i
I
=

!  1’
==0

(�1)=
✓�< � 1

=

◆
I
=

!

=

 1’
==0

h
<

=

i
I
=

!  1’
==0

✓
< + =
=

◆
I
=

!

Cauchy prod.
=

1’
==0

©≠
´
=’
9=0


<

9

� ✓
< + = � 9

= � 9

◆™Æ
¨
I
=

.

1Attention: the symbol
⌧
=

?

�
in [3] corresponds to our

h
=

?+1

i
.

A comparison of the coe�cients and the facts thath
<

9

i
= 0 for 9 > < as well as

⇥
<

0
⇤
= 0 for < 2 N⇤ yields

=
< =

min {=,<}’
9=1


<

9

� ✓
< + = � 9

<

◆
.

Now if = < <, then
�
<+=� 9
<

�
= 0 for = < 9  <. Hence,

using (1.2),

=
< =

<’
9=1


<

9

� ✓
< + = � 9

<

◆

=
<’
9=1


<

< � 9 + 1

� ✓
< + = � 9

<

◆

=
::=<� 9+1

<’
:=1

h
<

:

i ✓
= + : � 1

<

◆
.

Now consider the polynomials ?(G) = G< and

@(G) =
<’
:=1

h
<

:

i ✓
G + : � 1

<

◆
.

Then ? and @ have degree at most < and coincide for
G = = 2 N⇤. Hence they are equal.

(3) By taking I = �1 in (2.4), we obtain for =,< 2 N⇤

⇢=,<(�1) =
=’
:=1

:
<(�1):

= 2�<�1

 
<’
:=0

(�1):
⇣
0: (<) + (�1)=1:,= (<)

⌘!

= 2�<�1

 
<’
:=0

(�1):
⇣ h
<

:

i
+ (�1)=1:,= (<)

⌘!
.

A further representation of ⇢=,<(�1) is given in [7, p. 219]
in terms of the Euler polynomials. It would be interesting to
give the exact relations between the Euler polynomials and
our coe�cients 1 9 ,= (<).

Recall from Remark 2.2, that

<’
:=0

h
<

:

i
= <!.

The associated alternating sum can also be computed, (see [7,
p. 222]):

⇠< :=
<’
:=0

(�1):�1
h
<

:

i
= 2<+1 (2<+1 � 1) ⌫<+1

< + 1
,
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where ⌫= is the =-th Bernoulli number, defined to be 5 (=) (0)
for the holomorphic function

5 (I) =
8>><
>>:

I

4
I�1 if 0 < |I | < 2c

1 if I = 0.

In particular, ⇠< = 0 if < is even. This last assertion also
follows from the symmetry of the Eulerian numbers

⇥
<

:

⇤
.

Usually, the numbers )= := |⇠2=�1 | are called the tangent
numbers, because

1’
==1

)=

G
2=�1

(2= � 1)! = tan G, ( |G | < c).

We therefore call ⇠< the signed tangent number. It is easy
to see that ⇠< 2 N (since the Eulerian coe�cients belong
to N).

Here are the first Eulerian, Bernoulli and tangent
numbers:

�
⇥
<

1
⇤ ⇥

<

2
⇤ ⇥

<

3
⇤ ⇥

<

4
⇤ ⇥

<

5
⇤ ⇥

<

6
⇤ ⇥

<

7
⇤

<=1 1
<=2 1 1
<=3 1 4 1
<=4 1 11 11 1
<=5 1 26 66 26 1
<=6 1 57 302 302 57 1
<=7 1 120 1191 2416 1191 120 1
.
.
.

.
.
.

⌫0 = 1 ⌫1 = � 1
2 ⌫2 = 1

6 ⌫4 = � 1
30

⌫6 = 1
42 ⌫8 = � 1

30 ⌫10 = 5
66 ⌫12 = � 691

2730

⌫14 = 7
6 ⌫16 = � 3617

510 ⌫18 = 43867
798 ⌫20 = � 174 611

330

⌫22 = 854 513
138 ⌫24 = � 236 364 091

2730 · · ·

Note that ⌫2=+1 = 0 for all = 2 N⇤. And finally,
we conclude this remark by giving the first signed tangent
numbers:

⇠1 = 1 ⇠3 = �2 ⇠5 = 16 ⇠7 = �272 ⇠9 = 7 936

⇠11 = �353 792 ⇠13 = 22 368 256

⇠15 = �1 903 757 312 · · ·

Remark 2.3. Instead of the finite di↵erences calculus we
applied here to obtain our formula 2.3, one may also use
the di↵erential operator

�
I
3

3I

�
< to obtain a formula forÕ

=

:=1 :
<
I
: . This is based though on an inductive argument,

necessitating an a priori knowledge of the formula. Its proof
is lengthier. So I find our approach here more natural. This
di↵erential calculus approach to ⇢<(I) =

Õ1
:=1 :

<
I
: was

done for instance in [6].
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1. Introduction

The closed graph theorem and the open mapping theorem
are two fundamental theorems that students learn in a first
course of functional analysis. These two theorems together
with the Hahn-Banach theorem and the uniform boundedness
principle are commonly regarded as the four pillars in
functional analysis. The closed graph theorem basically gives
a su�cient condition for a linear map with a closed graph
to be continuous and the open mapping theorem provides a
su�cient condition for a continuous surjective linear map to
be open. It is interesting to see that the conclusion of both
the theorems hold without any additional condition for linear
functionals, i.e. for every normed linear space - , a linear
functional is continuous if its graph is closed and a continuous
surjective linear functional is always open. In this note, we
present the fact that this is not restricted to linear functionals
only. The conclusion of both the above mentioned theorems
hold for any domain space if and only if the codomain space
is finite dimensional. We do not provide the detailed proofs of
the known results which are available in standard text books
like [1].

Throughout this note, as far as possible, we stick to
standard notations only. - ,. denote normed linear spaces
over the field K(R or C). L(- ,. ) denotes the set of all linear
maps from - into . . Given any ) 2 L(- ,. ), ker) =

{G 2 - : ) (G) = 0} and Gr()) = {(G,) (G)) : G 2 -} are the
kernel and graph of ) respectively.

2. Main Results

Definition 2.1. A pair of normed linear spaces (- ,. ) has
the closed kernel property if for each ) 2 L(- ,. ), ) is
continuous whenever ker) is closed in - .

Example 2.2. Let - be a normed linear space and let 5 :
- ! K be a linear functional such that ker 5 is closed in - .
If possible, let 5 be not continuous. Thus there exists G0 2 -
such that 5 (G0) < 0. Since 5 is not continuous at 0, there
exists Y > 0 such that for each = 2 N, there exists G= 2 -

satisfying kG=k < 1
=

but | 5 (G=) | > Y. Define H= = G0� 5 (G0 )
5 (G= ) G=

for each = 2 N. Then (H=) is a sequence in ker 5 such that
H= ! G0. Since ker 5 is closed in - , we must have G0 2 ker 5
entailing 5 (G0) = 0, which is a contradiction. Hence the pair
(- ,K) has the closed kernel property.

We have plenty of examples to show that there are normed
linear spaces . for which we can find normed linear spaces
- such that (- ,. ) fails the closed kernel property. The
question is can we find some conditions on . under which
(- ,. ) satisfies the closed kernel property for every normed
linear space -? Is completeness of . the desired condition?
The answer is unfortunately negative. In fact there exist
normed linear spaces - such that completeness of . does not
guarantee the closed kernel property for the pair (- ,. ) even
for surjective linear maps. In order to illustrate our claim with
the help of an example, we need the following result.
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Definition 2.3. A normed linear space - is separable if it has
a countable dense subset.

Proposition 2.4. Every infinite dimensional separable
Banach space - has vector space dimension c.

Proof. By Baire category theorem, vector space dimension of
- can not be less than c. Again, since - is separable, it has a
countable dense subset, say �. Thus every G 2 - is the limit
of a convergent sequence in �. Since the cardinality of the set
of all sequences in � is |N| |N | = c, therefore cardinality of -
is less than equal to c. ⇤

Example 2.5. Consider the spaces ✓1 and ✓2. Both of them
are separable and so they have vector space bases of
dimension c and so they are isomorphic as vector spaces.
Suppose ) : ✓1 ! ✓

2 is a vector space isomorphism. Then
ker) = {0} and so it is closed in ✓1. If possible, let ) be
continuous. Then by bounded inverse theorem, )�1 : ✓2 ! ✓

1

is continuous and as a result ✓1 and ✓2 will be topologically
isomorphic, which is a contradiction. Hence (✓1

, ✓
2) does not

have the closed kernel property.

Definition 2.6. A pair of normed linear spaces (- ,. ) has

(a) the closed graph property if for every linear map ) :
- ! . , Gr()) is closed in -⇥. implies ) is continuous,

(b) the open mapping property if every continuous surjective
linear map ) : - ! . is open.

Example 2.7. Let - be any normed linear space. Suppose
5 : - ! K is a linear functional such that Gr( 5 ) is closed
in - . Let (G=) be a sequence in ker 5 such that G= ! G in - .
Thus (G=, 5 (G=)) = (G=, 0) ! (G, 0) and so (G, 0) 2 Gr( 5 )
as Gr( 5 ) is closed. It follows that 5 (G) = 0 and so G 2 ker 5 .
Consequently, ker 5 is closed entailing 5 to be continuous
by Example 2.2. Hence (- ,K) has the closed graph
property.

Example 2.8. Let - be any normed linear space. Suppose
5 : - ! K is a non-trivial linear functional. We claim
that 5 (⌫-1 (0)) contains an open ball centred at 0 in K. Let
X(< 0) 2 5 (⌫-1 (0)). Then there exists G(< 0) 2 ⌫-1 (0) such
that 5 (G) = X. Let U 2 ⌫K| X | (0). Thus |U | < |X |. Let H = UG

5 (G ) .

This gives 5 (H) = U and kHk = |U |
| 5 (G ) | kGk < 1. Thus 5 (H) =

U 2 5 (⌫-1 (0)). Therefore, ⌫K| X | (0) ⇢ 5 (⌫-1 (0)). Let ⌧ be any
open subset of - and let 5 (I) 2 5 (⌧). Thus there exists A > 0

such that ⌫-
A
(I) ⇢ ⌧. This implies 5 (⌫A (I)) ⇢ 5 (⌧). Now

⌫
K
A | X | ( 5 (I)) = 5 (I) + A⌫K| X | (0)) ⇢ 5 (I) + A 5 (⌫-1 (0))

= 5 (⌫-
A
(I)) ⇢ 5 (⌧).

Consequently, 5 (⌧) is open in K. Hence (- ,K) has the open
mapping property.

Theorem 2.9. (a) (The Closed Graph Theorem) If - and .
are Banach spaces, then the pair (- ,. ) has the closed
graph property.

(b) (The open mapping theorem) If - and . are Banach
spaces, then the pair (- ,. ) has the open mapping
property.

It is possible to find examples of normed linear spaces - ,.
such that the pair (- ,. ) fails to have both above mentioned
properties if either of - and . is incomplete. With this we are
motivated enough to ask the following questions:

Question 2.1. Let - be a normed linear space. Under what
condition on a normed linear space . , the pair (- ,. ) has

1. the closed graph property?
2. the open mapping property?

We answer all the questions with the following result.

Proposition 2.10. Let . be a normed linear space. Then the
following statements are equivalent.

(a) . is finite dimensional.
(b) (- ,. ) has the closed kernel property for every normed

linear space - .
(c) (- ,. ) has the closed graph property for every normed

linear space - .
(d) (- ,. ) has the open mapping property for every normed

linear space - .

Proof. (a) =) (b): Let - be a normed linear space and let
) 2 L(- ,. ) be such that ker) is closed in - . We know that
) (-) is isomorphic to -/ker) as vector spaces via vector
space isomorphism )̃ : -/ker) ! ) (-) given by )̃ (G +
ker)) = ) (G) for all G 2 - . As . is finite dimensional, ) (-)
is also finite dimensional and hence so is -/ker) . Thus )̃
is continuous. Therefore for all G 2 - , k) (G)k = k)̃ (G +
ker))k  k)̃ k kG + ker) k  k)̃ k kGk. Thus ) is continuous.
Hence (- ,. ) has the closed kernel property.
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(b) =) (c): It follows directly from the fact that for every ) 2
L(- ,. ), closedness of Gr()) implies closedness of ker) .

(c) =) (d): Let - be any normed linear space and let ) 2
L(- ,. ) be a continuous, surjective mapping. Continuity of
) implies that ker) is closed. Clearly, the quotient map c :
- ! -/ker) is continuous and surjective. Since for every
G 2 - and for every A > 0, c(⌫A (G)) = ⌫A (c(G)), therefore c
is an open map. By the definition of quotient topology, there
exists a continuous, linear bijection )̃ : -/ker) ! . such
that ) = )̃ � c. Since )̃ is continuous, Gr()̃) is closed in
-/ker) ⇥ . . It is not di�cult to show that the map

i : -/ker)⇥. ! . ⇥-/ker) ; (G+ker) , H) 7! (H, G+ker))

is a homeomorphism. Thus Gr()̃�1) = i(Gr()̃)) is closed
in . ⇥ -/ker) . By hypothesis, )̃�1 is continuous and so
)̃ is open. Let ⌧ be an open set in - . Thus c(⌧) is open
in -/ker) . Consequently, ) (⌧) = )̃ (c(⌧)) is open in .
entailing ) to be an open map. Hence (- ,. ) has the open
mapping property.

(d) =) (a): If possible, let . be infinite dimensional.
Then there exists a discontinuous linear map 5 : . ! K.
If kGk0 = kGk + | 5 (G) | for all G 2 . , then k.k0 is a norm on
. and 5 : (. , k.k0) ! K is continuous. Since the identity
map � from (. , k.k0) onto the normed linear space (. , k.k) is
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a continuous linear map, by hypothesis, � is open. Since � is
one-one, ��1 : (. , k.k) ! (. , k.k0) exists and is continuous.
Thus there exists " > 0 such that kGk0  " kGk for all G 2 . .
Thus for all G 2 . ,

| 5 (G) |  kGk0  " kGk.

This is a contradiction as 5 is discontinuous.

Remark 2.11. The idea of the implication (c) =) (d) is
borrowed from [2]. The implication (d) =) (a) is taken
from [3].
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1. Introduction

Let ⌦ ✓ C= be a domain. A holomorphic map 5 : ⌦ ! ⌦

is said to be an automorphism if 5 is bijective and the inverse
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is also holomorphic. The collection of all biholomorphisms
from ⌦ to itself is denoted by Aut(⌦). Aut(⌦) forms a
group under the composition of mappings. For ⌦ = C the
automorphism group Aut(C) = {I 7! 0I + 1 : 0, 1 2 C,
0 < 0}. However, For = � 2, the group Aut(C=) is huge.
The following mappings are elementary type automorphism
of C=: For any 5 , 6 2 O(C=�1)

I 7! (I1 + 5 (I2, . . . , I=), I2, I3, . . . , I=) (1.1)

I 7! (46 (I2 ,...,I= )
I1, I2, I3, . . . , I=). (1.2)

We also define Aut1(C=) := { 5 2 Aut(C=) : det⇡� (I)
⌘ 1}. Following the terminology of Rosay-Rudin [10],
the maps of type (1.1) and their (; (=,C) conjugates are
called the shear maps, and the maps of type (1.2) and their
⌧; (=,C) conjugates are called overshears. In the seminal
work of Rosay and Rudin [10], the authors investigated
various properties pertaining to the automorphisms of C=.
Particularly, noteworthy is their examination of a specific
class of automorphisms known as ‘shears’. This elegant study
sheds light on the fascinating characteristics exhibited by such
automorphisms within C=.

It follows from [10] that the group Aut(C=) act
<-transitively on C=, i.e., for every pair of m-tuples {0 9 }<1 ,
{1 9 }<1 subset of C= of distinct elements, there exists 6 2
Aut(C=) such that 6(0 9) = 1 9 for 9 = 1, . . . ,<. The topology
in Aut(C=) is the compact open topology, i.e., the sense of
convergence is the uniform convergence on compact subsets
of C=.

The Andersén-Lempert theory has been generalized in the
case of manifolds–now they are called the manifolds with
density property. In this article, we focus on C= and explain
in details in Section 2. In Section 3 we give a survey of
the results about approximation of biholomorphic maps by
automorphisms of C= and some of their applications.

2. The Andersén-Lempert theory in Cn

In the same paper, Rosay and Rudin [10, Question 8] asked
the following question: Can every � 2 Aut(C=) with �� ⌘ 1
be approximated by finite compositions of shears?

In 1990, Andersén [1] provided an a�rmative answer.
The following provides a coordinate-independent repre-

sentation for both the Shear map and the Overshear map.

Let : < = and ⇤ : C= ! C: be a C linear map. Let E 2
Ker ⇤ and 5 2 O(C:). Then, the following types of maps are
contained in the automorphism group of C=: For every C 2 C

shear: �C (I) 7! I + C 5 (⇤(I))E (2.1)

overshear:  C (I) 7! I + 1
kEk2 (4

C ( kE k2
5 (⇤(I) ) ) � 1)hI, EiE

(2.2)

I 7! (I14
21q (IA )

, . . . , I=4
2=q (IA ) ). (2.3)

Here q : C ! C is a holomorphic function and A =

(A1, A2, . . . , A=) 2 N= with
Õ
=

9=1 2 9A 9 = 0 and I
A :=

I
A1
1 I

A2
2 . . . I

A=
=

. For 1  :  =, let (=
:
,"

=

:
be the sets consisting

of automorphism of type (2.1), (2.2) respectively, where : is
determined by 5 2 O(C:). For � ⇢ Aut(C=) let⌧ (�) denote
the group generated by � in Aut(C=).

Since the maps ⇤ and 5 are holomorphic mappings, hence,
�C is holomorphic from C= to C=. We have the following for
every C 2 C:

�C (I � C 5 (⇤I)E) = I � C 5 (⇤I)E + C 5 (⇤(I � C 5 (⇤I)E))E.

Since ⇤ is a linear map and E 2 Ker(⇤), hence, we get that

�C (I � C 5 (⇤I)E) = I � C 5 (⇤I)E + C 5 (⇤I)E

= I.

Therefore, the inverse of the map �C is ��C = I � C 5 (⇤(I))E.
In a similar way, we can find that the inverse of the map  C is
 �C .

The following lemma [6, Lemma 4.1.1] proves that the
maps of type (2.1) and (2.2) are obtained by applying linear
change of coordinates of the maps of the form (1.1) and (1.2)
respectively.

Lemma 2.1. Suppose �C and  C are as given by (2.1) and
(2.2) respectively. Then, we have:

i. If � 2 ⌧!= (C) is such that �E = 4=, then � � �C (I) =e�C (�I), where e�C is given by (2.1) with 5 replaced by
5 � _ � ��1.

ii. If � 2 * (=) is such that �E = |E |4=, then � �  C (I) =e C (�I), where e C is given by (2.2) with 5 replaced by
|E |2 5 � _ � ��1.

The following result is due to Andersén [1, Theorem C].
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Theorem 2.2 (Andersén). ⌧ ((=1 ) = Aut1(C=), where the
closure is taken in compact open topology.

In [1, Theorem B], it is also proved that

Theorem 2.3 (Andersén). The automorphism ⌧ : C2 !
C2 defined by (I,F) 7! (I4IF ,F4�IF) can not be written as
a finite composition of the shear maps.

The following result is due to Andersén-Lempert [2,
Theorem 1.3].

Theorem 2.4 (Andersén-Lempert). ⌧ ("=

1 [ (:1 ) is dense
in Aut(C=) with respect to compact open topology.

Breakthroughs in [2] not only answered Rudin’s question
but also accelerated the pace of research in the field of
Aut(C=).

In this article, we present a proof of Theorem 2.4. The proof
of Theorem 2.4 relies heavily on the next three subsequent
lemmas concerning solutions of ODEs. Most of the material
is taken from [6].

Definition 2.5. A holomorphic vector field + on C= is a real
vector field on R2= of the form

+ (I) =
=’
8=1

08 (I)
m

mG8

+ 18 (I)
m

mH8

such that (0 9 + 81 9) is a holomorphic function for all 9 2
{1, 2, . . . , =}.

The next result will be used in the proof of Proposition 2.13.

Result 2.6 ([6]). Let + be a time-dependent continuous
vector field on a domain ⌦ ⇢ '

1+= satisfying a uniform
Lipschitz estimate

|+C (G) �+C (H) |  ⌫|G � H |,

for some ⌫ > 0. Then for any B 2 R and any pair of points
G, H 2 ⌦B we have

��
qC ,B (G) � qC ,B (H)

��  4⌫ |C�B | |G � H |,
for all C such that the trajectories exist and remain in the
domain ⌦C = {G 2 R= : (C, G) 2 ⌦}.

The next result [4, Lemma 2.8] will play a crucial role in
establishing Theorem 2.4. Specifically, it asserts that every
divergence-free vector field generates volume preserving
flow.

Result 2.7. Let ⌦ ⇢ C= be open, � : ⌦! C= be a complete
C1 vector field, and - (C, I) be its flow. Then

3

3C

det⇡I (- (C, I)) = div(� (- (C, I))) · det⇡I (- (C, I)).

Here div� := m�1
mI1

+ m�2
mI2

+ · · · + m�=
mI=

.

We will work with a time-dependent vector field - : R ⇥
C= ! C=. Here - is a C1 map and -C is holomorphic for
every fixed C 2 R. Recall that for such vector fields, the flow
of - at (C0, I0) 2 R ⇥ C= is the map q(·; C0, I0) defined on a
neighborhood �C0 of C0 which satisfies the following Cauchy
problem:

3q(C; C0, I)
3C

= -C (q(C; C0, I))

q(C0; C0, I0) = I0, (2.4)

with C 2 �C0 . We will also refer to q as the solution to the
vector field - . The time-dependent vector field - is said to be
complete if the solution of (2.4) exists for all (C0, I) 2 R ⇥C=

for all C 2 R.

Result 2.8 ([6, Page-36]). Let + be a vector field on C= for
some = 2 N and q(C, G) be its flow. For any I 2 C= and any C
for which qC (I) exists, it holds that qC (I) = I + C+ (I) + >(C).

Lemma 2.9. Let + ,, 2 XO (C=) be two vector fields and qC
and kC be the corresponding flows. Let  C (I) = (qC � kC ) (I),
when RHS is well defined. Then we have the following:

i. m C (I)
mC

|C=0 = + (I) +, (I)
ii.  C (I) � I � C (+ (I) +, (I)) = >(C).

Proof. From Result 2.8, we get that

qC (I) = I + C+ (I) +$ (C2)

 C (I) = qC (kC (I)) = kC (I) + C+ (kC (I)) +$ (C2)
m C

mC

= , (kC (I)) ++ (kC (I))

+ C⇡+ (kC (I)), (kC ) (I) +$ (C).

Taking limit C ! 0+ we get that limC!0
m C
mC

= + (I) +, (I).
This proves (8).
Again from Result 2.8, we get the following:

qC (I) = I + C+ (I) +$ (C2),

hence, we have

 C (I) = qC (kC (I)) = kC (I) + C+ (kC (I)) +$ (C2),
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therefore, from Result 2.8, we get that

 C (I) = I + C (, (I)

++ (kC (I))) +$ (C2),

 C (I) � I � C (+ (I) +, (I)) = C (+ (kC (I)) �+ (I)) +$ (C2),

 C (I) � I � C (+ (I) +, (I))
C

= (+ (kC (I)) �+ (I)) +$ (C).

The right-hand side of the above equation goes to 0 as C ! 0+.
This proves the lemma. ⇤

The following lemma is from [1].

Lemma 2.10. Let : , = 2 # := N[ {0} and let <: 2 N be the
cardinality of the set of multi-indices {� 2 N= : |� | = :}. Then
there exist linear maps {_ 9 }<:

9=1, _ 9 : C= ! C, such that any
homogeneous polynomial % of degree : is of the form

%(I) =
<:’
9=1

2 9 (_ 9 (I)): , 2 9 2 C.

Proof. We can always write _ 9 (I) = hI, 0 9i for a certain 0 9 2
C=, 9 2 {1, . . . ,<:}. Then (_ 9 (I)): =

Õ
|� |=:

�
:

�

�
0
�

9
I
� , where

I
� := I

�1
1 I

�2
2 . . . I

�=
=

and
�
:

�

�
:= :!

�1!�2!...�:! . Now we have the
following:
<:’
9=1

2 9 (_ 9 (I)): =
<:’
9=1

2 9

’
|� |=:

✓
:

�

◆
0
�

9
I
� =

’
|� |=:

✓
:

�

◆
I
�

<:’
9=1

2 90
�

9
.

Since %(I) is homogeneous polynomial of degree : ,

%(I) =
’
|� |=:

%� I
�

.

It is enough to find a solution
✓
:

�

◆ <:’
9=1

2 90
�

9
= %� .

Consider the <: ⇥ <: matrix � = (0�
9
) |� |=:
9=1,2,...,<:

where
|� | = : for 9 2 {1, . . . ,<:}. The previous equation has a
solution for det � < 0. Choose the entries of the vectors 0 9
to be multiplicatively independent over Q, i.e., 0�1

91
= 0

�2
92

if
and only if 91 = 92 and �1 = �2. With this choice, det � is a
Vandermonde determinant and it is not zero. ⇤

Remark 2.11. Here det � is a homogeneous polynomial of
degree :< in <= variables, and the set {det � < 0} is a
non-empty open dense set of C<=. Hence, given any open set
* ⇢ (C=)⇤ (the dual of C=), we can choose our linear maps to
be in*.

Lemma 2.12 ([11, Theorem 2.8]). Let ⌦ ⇢ C= be a
domain, � ⇢ R an open interval, and 5 , 6 : � ⇥ C= ! C= be
time-dependent continuous vector fields. Suppose 5 is locally
Lipschitz on the second variable, uniformly with respect to the
first one. Let k and q be the solutions to the following Cauchy
problems:

8>><
>>:
3k (C;C0 ,F)

3C
= 6(C,k(C; C0,F))

k(C0; C0,F0) = F0

8>><
>>:
3q (C;C0 ,I)

3C
= 5 (C, q(C; C0, I))

q(C0; C0, I0) = I0.

Then we have that

kq(C; C0, I0) � k(C; C0,F0)k

 kI0 � F0k4! |C�C0 | + " · 4
! |C�C0 | � 1

!

where
! = sup

(C ,I)<(C ,F)2*

k 5 (C, I) � 5 (C,F)k
kI � Fk ,

and
" = sup

(C ,I)2*
k 5 (C, I) � 6(C, I)k

with * being a set containing both graphs of q(C; C0, I0) and
k(C; C0,F0).

The following proposition outlines a method for
approximating the flow of a vector field, which is expressed
as a finite sum of complete vector fields. This implies that if
a vector field defined on C= is represented as a finite sum of
complete vector fields on C=, its flow can be approximated
by elements of the automorphism group of C=.

Proposition 2.13. Let - be a holomorphic vector field, and
suppose that its flow q(C, I) exists on [0, 1] ⇥C=. Assume that
there exist complete holomorphic vector fields -1, . . . , -<

such that - =
Õ
<

9=1 - 9 and q: (C, I) is the flow of the vector
field -: for : 2 {1, 2, . . . ,<}. Then

(q1
C
=
� q2

C
=
� · · · � q<C

=
)= (I) ! q(C, I),

uniformly on every compact subset of [0, 1] ⇥ C=.

Proof. Let I0 2 C= and + ⇢ C= be a relatively compact
open neighborhood of I0. Let  C (I) = q

1
C
� q2

C
� · · · � q<

C
(I)

and choose C0 > 0 such that ⌫(I0, 2⇠C0) ⇢ + , where
⇠ := sup

CC0 ,G2+
�� m
mC
 C (I)

��. The constant ⇠ > 0 exists since
m

mC
 C (I) ! - (I) exists as C ! 0+ uniformly on every

compact subset on C=, particularly on + .
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We first prove the statement for C  C0. We use induction
to show that ( C

=
)= (I) :=

�
 C

=
�  C

=
· · · �  C

=|                 {z                 }
= times

�
(I) 2

⌫(I0, 2⇠C0) for every = 2 N and for each I 2 ⌫(I0,⇠C0) and
each C  C0. Since

k C (I) � Ik 
π

C

0

����m g (I)
mg

���� 3g  ⇠C,

8C  C0 8I 2 ⌫(I0,⇠C0),

we obtain that

k C (I)�I0k  k C (I)�Ik+kI�I0k  2⇠C0,8I 2 ⌫(I0,⇠C0),

and the statement is proved for = = 1.
Let = > 1 and I 2 ⌫(I0,⇠C0). We can then express ( C

=
)=

as a telescopic sum in the following way:

( C
=
)= (I) � I =

=’
9=1

 C
=
(( C

=
)=� 9 (I)) � ( C

=
)=� 9 (I) (2.5)

Since from the induction hypothesis ( C
=
)=� 9 (I) 2 + , for

all I 2 ⌫(I0,⇠C0), hence,

k C
=
(( C

=
)=� 9 (I)) � ( C

=
)=� 9 (I) (I)k


π C

=

0

���� m
mg

 g (( C
=
)=� 9 (I)) 3g

���� ·  ⇠ C
=

. (2.6)

From (2.5), (2.6) it follows that k ( C
=
)= (I)�Ik < ⇠C0. Hence,

using triangle inequality we get that

k ( C
=
) C
= (I) � I0k  2⇠C0.

It follows from Lemma 2.9 that m

mC

��
C=0 C (I) = - (I). From

Result 2.8, we get that (qC (I) � I � C- (I)) = >(C). Also, in
view of Lemma 2.9, we obtain that ( C (I) � I � C- (I)) =

>(C). Hence,

qC (I) �  C (I) = (qC (I) � I � C- (I)) � ( C (I) � I � C- (I))

= >(C). (2.7)

We now express the di↵erence between qC (I) and ( C
=
)= (I)

again as a telescopic sum, as follow:

qC (I) � ( C
=
)= (I) = (q C

=
)= (I) � ( C

=
)= (I)

=
=’
9=1

h
(q C

=
)=� 9 � (q C

=
(( C

=
) 9�1(I)))

� (q C
=
)=� 9 � ( C

=
) 9 (I)

i
(2.8)

Since our vector field is smooth, hence, it is locally Lipschitz
continuous. Therefore, using Result 2.6, we get that

kqC (I) � ( C
=
)= (I)k 

=’
9=1

4
CV

=� 9
=

⇥ kq C
=
(( C

=
) 9�1(I)) �  C

=
(( C

=
) 9�1(I))k,8I 2 ⌫(I0,⇠C0).

From (2.7), and above equation we get that

kqC (I) � ( C
=
)= (I)k  =4VC>

⇣
C

=

⌘
,

where V is the Lipschitz constant of the vector field - on the
domain + . We have, therefore, established the assertion for
C  C0.

Let ) > 0 and � := {qC (I0) : C 2 [0,)]}. Since � is
compact, we can find a relatively compact open neighborhood
, ⇢ C= of � and X > 0 such that ( C

=
)= converges to qC

uniformly on compact subsets of , for all C < X. Choose
=0 2 N such that )

=0
< X. Therefore, we have the following for

I 2 ,

qC (I) = (q C
=0
)=0 (I) = lim

;!1
( C

;=0
);=0 (I),8C  ) .

Hence, it follows that the subsequence ( C
;=0

);=0 uniformly
converges to qC (I) on, as ; ! 1.

Let # 2 N, then there exist ?, @ 2 N such that ? < =0 and
# = =0@+ ?. Clearly, )

=0@+? < X and )=0@
=0@+? < ) and ( )

=@+?
) ?

converges to 83 as =! 1.

( )
#
)# (I) = ( )

=0@+?
)=0@ (( )

=0@+?
) ? (I))

= ( )=0@
=0@+?

1
=0@

)=0@ (( )
=0@+?

) ? (I)) ! q) (I)

uniformly on, . ⇤
The subsequent propositions enables us to approximate the

flow of a time-dependent vector field using the flow of another
time-independent vector field.

Proposition 2.14. Let +C be a time-dependent holomorphic
vector field on C= and let q(C; B, I) be the solution of the
following system of ODE:

3q(C; B, I)
3C

= +C (q(C; B, I))

q(B; B, I0) = I0. (2.9)

Let < 2 N and consider the vector field +<(C, I) as follow:

+<(C, I) =

8>>>>>>>><
>>>>>>>>:

+ (0, I) if 0  C < 1
<

+ ( 1
<
, I) if 1

<
 C < 2

<

.

.

.

+ (<�1
<

, I) if <�1
<

 C  1
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and let H<(C, I) be the solution of the following $⇡⇢

8>><
>>:
3H< (C ,I)

3C
= +<(C, H<(C, I))

H<(0, I) = I.

Then {H<}< converges uniformly on compact sets of [0, 1] ⇥
C= (where the flow of the vector field +C exists) to the flows of
the time dependent vector field +C .

Proof. We will prove the case when B = 0. We apply
Lemma 2.12 to the vector fields + and +<. Since the vector
field+< is not continuous, we will have to restrict ourselves to
intervals of the form

⇥
:

<
,
:+1
<

⇤
with 0  : < <. Let  ⇢ C=

be any compact set, and let Y > 0. Let

! = sup
(C ,I)<(C ,F)2 [0,1]⇥ 

k+ (C, I) �+ (C,F)k
kI � Fk ,

and

"< = sup
(C ,I)2 [0,1]⇥ 

k+ (C, I) �+<(C, I)k

Let U = max
⇣
4
!
,
4
!�1
!

⌘
. Clearly, U � 1. Since +

is continuous, it is absolutely continuous in [0, 1] ⇥  .
Therefore, there exists <0 2 N such that for every < � <0,
"< <

Y

2U .

Claim 2.15. If q(C, I) is the solution (2.9) with q(0, I) = I.
Then, for each < > <0 and 0  : < <, we have that
kq(C, I) � H<(C, I)k < Y in

⇥
:

<
,
:+1
<

⇤
⇥  .

We prove the claim by mathematical induction on : .
Let : = 0. Here +< is continuous in

⇥
0, 1
<

⇤
and + is

particularly continuous and locally Lipschitz on I uniformly
with respect to C (every holomorphic map is locally Lipschitz).
Hence, invoking Lemma 2.12 we get that for every (C, I) 2⇥
0, 1
<

⇤
⇥  ,

kq(C, I) � H<(C, I)k  "<

!

⇣
4
!C � 1

⌘

<

4
! � 1
!

Y

2U
 Y

2
< Y.

Now suppose the result is true for : and let us prove it for
: + 1. For every (C, I) 2

⇥
:+1
<

,
:+2
<

⇤
⇥  we have C = g + :+1

<

for some 1
<

> g � 0. From the property of the flow map

we have the following:

kq(C, I) � H<(C, I)k

=
����q

✓
g,

✓
q

✓
: + 1
<

, I

◆◆◆
� H<

✓
g, H<

✓
: + 1
<

, I

◆◆���� .
In view of Lemma 2.12, we obtain that

kq(C, I) � H<(C, I)k


����q

✓
: + 1
<

, I

◆
� H<

✓
: + 1
<

, I

◆���� 4!g + "<
!

�
4
!g � 1

�


����i

✓
: + 1
<

, I

◆
� H<

✓
: + 1
<

, I

◆���� 4! + "<
!

�
4
! � 1

�

<

Y

2U
4
! � 1
!

4
! + 4

! � 1
!

Y

2U
.

From the choice of U > 0 we have

kq(C, I) � H<(C, I)k  Y.

Therefore, for any 0  : < < we have

kq(C, I) � H<(C, I)k [ :
< ,

:+1
< ]⇥ < Y,

for all < � <0. Consequently, we have

kq(C, I) � H<(C, I)k [0,1]⇥ < n .

That is, (H<)< converges uniformly on compact subsets of
[0, 1] ⇥ C= to q. ⇤

The following proposition will be used to prove
volume-preserving approximation. Recall that for vector field
� = (�1, �2, . . . , �=), div� := m�1

mI1
+ m�2
mI2

+ · · · + m�=
mI=

.

Proposition 2.16. Let . : C= ! C= be a holomorphic
vector field with div . = 0. Then, there exists a sequence
of polynomial vector fields /< : C= ! C= approximating .
uniformly on compact sets such that div/< = 0.

Proof. Fix  ⇢ C= compact and Y > 0. Let . (I) =

(H1(I), . . . , H= (I)) and assign the holomorphic (=�1, 0)-form
as follow

l(I) =
=’
:=1

(�1):�1
.: (I)3I1 ^ . . . ^ d

3I: ^ . . . ^ 3I=.

Now exterior derivative of l is

3l =
=’
:=1

(�1):�1 m.:

mI:

3I: ^ 3I1 ^ . . . ^ d
3I: ^ . . . ^ 3I=
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=
=’
:=1

m.:

mI:

3I1 ^ . . . ^ 3I=

= div.3I1 ^ . . . ^ 3I=.

Hence, from assumption we have

3l = 0.

Since C= is simply connected, there exists a holomorphic
(= � 2, 0)-form g such that l = 3g. As g is holomorphic,
hence, we can find a sequence of (= � 2, 0)-forms
with polynomial coe�cients approximating g uniformly on
compact subsets of C=.

If

g =
’

18< 9=
g8 93I1 ^ . . . ^ b

3I8 ^ . . . ^ b
3I 9 ^ . . . ^ 3I=

then given any Y > 0 and any compact subset  ⇢ C= it
follows that there exists

f =
’

18< 9=
f8 93I1 ^ . . . ^ b

3I8 ^ . . . ^ b
3I 9 ^ . . . ^ 3I=,

such that | g8 9 (I)� f8 9 (I) |< Y. Here computing the exterior
derivative of both g and f we get that

l = 3g =
’

18< 9=
(�1)8�1 mg8 9

mI8

3I1 ^ . . . ^ c
3I 9 ^ . . . ^ 3I=

+
’

18< 9=
(�1) 9�2 mg8 9

mI 9

3I1 ^ . . . ^ c
3I8 ^ . . . ^ 3I=

and

3f =
’

18< 9=
(�1)8�1 mf8 9

mI8

3I1 ^ . . . ^ c
3I 9 ^ . . . ^ 3I=

+
’

18< 9=
(�1) 9�2 mf8 9

mI 9

3I1 ^ . . . ^ c
3I8 ^ . . . ^ 3I=.

Finally, rewrite 3f as

3f =
=’
:=1

(�1):�1
/: (I)3I1 ^ . . . ^ d

3I: ^ . . . ^ 3I=.

Let / (I) = (/1(I), . . . , /= (I)) be a holomorphic
polynomial vector field. Here, the vector field / is
constructed from the (= � 1, 0)-form 3f in similar way the
(= � 1, 0)-form l constructed from the vector field . .
Therefore, / approximate . uniformly on  .

Also, we have

0 = 32
f =

=’
:=1

m/:

mI:

3I1 ^ . . . ^ 3I= = div /3I1 ^ . . . ^ 3I=.

Consequently, div/ = 0. This completes the proof. ⇤

The next proposition holds crucial significance in
establishing the proof of both Theorem 2.4 and Theorem 3.3,
enabling us to break down every algebraic vector field into a
finite sum of complete vector fields.

Proposition 2.17 ([6, Lemma 4.9.9]). For each : 2 N

there exists finitely many C-linear functionals _1, _2, . . . , _A

on C= and vectors E1, E2, . . . , EA 2 C=, with _ 9 (E 9) = 0
and kE 9 k = 1 for all 9 2 {1, 2, . . . , A}, such that
every holomorphic polynomial map + : C= ! C= that is
homogeneous of degree : is of the form

+ (I) =
A’
9=1

2 9 (_ 9 (I)):E 9 + 3 9 (_ 9 (I)):�1hI, E 9iE 9 , (2.10)

for some 2 9 , 3 9 2 C. If div(F+) = 0, 3 9 can be taken 0 for all
9 2 {1, 2, . . . , A}.

Proof. Let % 2 C[I1, . . . , I=] is a homogeneous polynomial
of degree : . Invoking Lemma 2.10, we get that there exist
linear forms _8 (I) =

Õ
=

9=1 08 9 I 9 on C= (8 = 1, . . . ,< =

<(: , =)) such that

%(I) =
<’
8=1

28_8 (I): , 28 2 C. (2.11)

The forms _8 may be chosen from any nonempty open set
* ⇢ (C=)⇤.

Let 41, 42, . . . , 4= are the standard ordered basis of C=. By
a linear change of coordinates, we may assume that 4⇤1(I) :=
I1 2 *, where 4⇤1 : C= ! C defined by 4⇤1(4 9) = 0 for all
9 2 {1, 2, . . . , =} and 4⇤1(41) = 1. Choose _1, _2, . . . , _< 2 *
satisfying (2.11) for homogeneous polynomials of degree :
and : �1. After a linear change of coordinates we can assume
that _8 (4=) = 08= = 1 for all 8 = {1, 2, . . . ,<}.

Now div+ (I) is a homogeneous polynomial of degree
: � 1. Therefore, from (2.11), we conclude that there exist
3 9 2 C such that div+ (I) =

Õ
<

9=1 3 9 (_ 9 (I)):�1. Choose
E 9 := (E 91, E 92, . . . , E 9=) 2 Ker_ 9 with kE 9 k = 1 and set

e+ 9 (I) = 3 9 (_ 9 (I)):�1hI, E 9iE 9
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for 9 = 1, 2, . . . ,<. Next, we compute the divergence of e+ 9 :
dive+ 9 (I) =

=’
U=1

E 9 U

�
3 9 (: � 1) (_ 9 (I)):�2

0 9 UhI, E 9i

+ 3 9 (_ 9 (I)):�1
E 9 U

�
.

Since E 9 2 Ker_ and kE 9 k2 = 1, hence, we have

dive+ 9 (I) = 3 9 (_ 9 (I)):�1 8 9 2 {1, 2, . . .<}.

Since div+ =
Õ
<

9=1 dive+ 9 (I), therefore, we have that
div- (I) = 0, where - (I) = + � Õ

<

9=1
e+ 9 (I). Consequently,

we have + = - +Õ
<

9=1
e+ 9 (I) and the form of e+ 9 (I) as second

summand of the (2.10). Therefore, it is enough to show that
for every divergence zero homogeneous polynomial vector
field - on C= of degree : there exists _8 2 * and E8 2 Ker_8
and A 2 N such that

- (I) =
A’
8=1

28 (_(I)):E8 , 28 2 C. (2.12)

We apply (2.11) to the component -; of - for ; 2
{1, . . . , =� 1} to get -; (I) =

Õ
<

8=1 28; (_8 (I)): . Since from the
construction of _8 we have _8 (4; � 08;4=) = 0, hence the flow
of each vector field defined by

+8; (I) := 28;_8 (I): (4; � 08;4=)

is a shear map. Also div+8; = 0 for all 8 2 {1, 2, . . . ,<}
and ; 2 {1, 2, . . . , (= � 1)}. Let , =

Õ
<

8=1
Õ
=�1
;=1 +8,; =

(,1, . . . ,,=). Then, ,; = -; for ; = 1, . . . , = � 1, and hence
- = , + (-= �,=)4=.

Since div- = 0 = div, , we get m(-=�,= )
mI=

= 0. Therefore,
-= � ,= is independent of I=, and hence (-= � ,=)4= is a
vector field whose flow is a shear map of C=.

By choosing another linear form _
0
9
(I) 2 * that

depends on (I1, I2, . . . , I=�1) we write -= � ,= =Õ
9
2
0
9
(_0
9
(I1, I2 . . . , I=�1)): . Therefore,

- = , +
’
9

2
0
9
_
0
9
(I1, I2 . . . , I=�1)4=.

By construction,, is the first summand of the (2.10). Hence,
we get the required form of - . This completes the proof. ⇤

Remark 2.18. The flow of the vector field 2 9 (_ 9 (I)):E 9
is of the form �C (I) defined as (2.1) with the function
5 : C ! C defined by 5 (I) = 2 9 I

: . Similarly, the flow of
the vector field 3 9 (_ 9 (I)):�1hI, E 9iE 9 is of the form  C (I) as
given in (2.2) with 5 : C! C defined by 5 (I) = 3 9 I:�1.

Next, we point out the main steps in the proof of Theorem 2.4.

Step 1. First, we will establish a homotopy between 5 2
Aut(C=) and the identity through a map q(C, I) such that
q(0, I) = I, q(1, I) = 5 (I), and q is the solution to some
time-dependent vector field - (which also will depend on 5 ).
Thus, 5 will be the time 1 map of the flow map of - .

At this stage, the approach is to approximate the vector
field - in intervals of the form [ :

<
,
:+1
<

] by time-independent
vector fields +:,<. From Proposition 2.14, it will imply that a
solution of +:,< will approximate the solution of - , denoted
by q, in the interval [ :

<
,
:+1
<

]. Consequently, concatenating
the solutions of +:,< will yield an approximation to q.

Step 2. Next, we will approximate each vector field +:,<

using a vector field whose solutions exhibit overshearing
behavior. To accomplish this we will do the following:

(1) We will initially approximate +:,< by employing a
polynomial vector field.

(2) Subsequently, invoking Proposition 2.17 we will
decompose the polynomial vector field into a
combination of complete vector fields / 9 , ensuring that
their time-C maps manifest as overshears.

Step 3. The final step involves composing the flows of the
/ 9’s at time C > 0. Invoking Proposition 2.13, we get an
approximation (comprising a composition of overshears) to
the solution of +:,<, providing us with an approximation to q.
Setting C = 1, we obtain an approximation to 5 .

The following lemma is also required for the proof.

Lemma 2.19. Let 5 2 Aut(⇠=) with 5 (0) = 0 and ⇡ 5 (0) =
Id. Then q : R ⇥ C= ! C= defined by

q(C, I) =
8>><
>>:
5 (C I)
C

if C < 0,

I, if C = 0,

is a 1-parameter group of automorphisms of C=, holomorphic
in both C and I variables. Moreover, q satisfies the following
ODE

8>><
>>:
3q (C ,I)
3C

= - (C, (q(C, I))),
q(0, I) = I,

(2.13)

where
- (C, I) = 3q

3C

(C, q�1
C
(I)),
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thus, in particular, - is complete. If, in addition, det⇡ 5 (I) ⌘
2 for some constant 2 2 R, then div- = 0.

Proof. It is clear from the definition that the map qC : C= !
C= defined by qC (I) := q(C, I) 2 Aut(C=) for all C 2
[0, 1]. Hence, q is a one-parameter family of automorphisms.
Since 5 2 Aut(C=), hence, the Taylor series expansion of
the mapping 5 at the origin converges uniformly on every
compact subset of C=. Since 5 (0) = 0 and ⇡ 5 (0) = �3,
hence, we get that

5 (CI) = CI +
1’
:=2

1
:!
⇡
:

5 (0) (CI, CI, . . . , CI)|            {z            }
:�times

, (2.14)

where ⇡
:
5 (0) : C= ⇥ C= · · · ⇥ C=|                {z                }

:�times

! C= is :-linear map

over C.
(2.15)

Thus, we have

5 (CI)
C

= I +
1’
:=2

C
:�1 1

:!
⇡
:

5 (0) (I, I, . . . , I)|        {z        }
:�times

. (2.16)

Clearly,
Õ1
:=2 C

:�1 1
:!⇡

:
5 (0) (I, I, . . . , I)|        {z        }

:�times

! 0 uniformly

over every compact subset to 0 as C ! 1. Hence, the map
qC (·) is holomorphic for every C 2 [0, 1]. It follows from the
definition of - that q satisfies the (2.13).

If det ⇡ 5 (I) is constant, then it follows that ⇡IqC (I) =

⇡ 5 (CI) = constant. Hence, from Result 2.7, it follows that
div- = 0. ⇤

Proof of Theorem 2.4. Let 5 : C= ! C= be an automorphism
of C=. Fix any compact  ⇢ C= and n > 0. Without loss of
generality we can suppose that 5 (0) = 0 and ⇡ 5 (0) = Id.
Otherwise, we will consider the map 6(I) = ⇡ 5 (0)�1( 5 (I) �
5 (0)).

From [2, Proposition 3.1] it follows that any invertible
linear map (and translation) can be written as a composition
of overshears. Therefore, it is enough to prove that 6 can
be approximated by Aut(C=). Thus, we can assume that
5 (0) = 0 and ⇡ 5 (0) = Id. Then, by Lemma 2.19, q(C, I) =
5 (C I)
C

if C < 0 and q(0, I) = I is a 1-parameter group
of automorphisms of C=. Moreover, q(C, I) can be viewed
as the flow of the time-dependent vector field - defined as

Lemma 2.19. Next, we define the following vector field

-<(C, I) =

8>>>>>>>><
>>>>>>>>:

- (0, I) if 0  C < 1
<

- ( 1
<
, I) if 1

<
 C < 2

<

.

.

.

- (<�1
<

, I) if <�1
<

 C  1.

Suppose that G<(C, I) be the solution of the following system:

8>><
>>:
3G< (C ,I)

3C
= -<(C, G<(C, I))

G<(0, I) = I.

Invoking Proposition 2.14, we get that G< approximates q
uniformly on  . Thus, there exists <0 2 N such that for all
< � <0 we have

kq(C, I) � G<(C, I)k [0,1]⇥ <

Y

3
. (2.17)

Since -<(C, I) is a time-independent in the intervals of the
form [:/<, (: +1)/<] and holomorphic in I variables for I 2
C=, hence, we can approximate -< uniformly on [:/<, (: +
1)/<] ⇥ by a polynomial vector field / (: ) whose flow i (: )
satisfies

kG<(C, I) � i (: ) (C, I)k [:/<, (:+1)/<]⇥ <

Y

3
. (2.18)

Now Proposition 2.17, allows us to write the polynomial
vector field /

(: ) as finite sum complete polynomial vector
field as follow:

/
(: ) =

<’
9=1

/
(: )
9

,

where / (: )
9

are complete vector field for 9 = 1, 2, . . .<.
Suppose that [ 9(: ) (G) := (k1

C
9
� k2

C
9
� · · · � k<C

9
) 9 (G), where

k
9

C
(I) is the flow of the vector field / (: )

9
for 9 = 1, 2, . . . ,<.

Then, from Lemma 2.19, it follows that there exists 9: 2 N
such that for all 9 � 9: and for all (C, I) 2

⇥
:

<
,
:+1
<

⇤
⇥  it

follows that,

ki (: ) (C, I) � [ 9(: ) (C, I)k <
Y

3
. (2.19)

Therefore, for all 9 � 9: we have the following: For all
(C, I) 2 [ :

<
,
:+1
<

] ⇥  ,

kq(C, I) � [ 9(: ) (C, I)k

 kq(C, I) � G<(C, I)k + kG<(C, I) � i (: ) (C, I)k

+ ki (: ) (C, I) � [ 9(: ) (C, I)k

< Y. (2.20)
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This implies that for every C > 0, [ 9(: ) (C, I) ! q(C, I)
uniformly over  as 9 ! 1. (Here : depends on C).

It follows from Remark 2.18 that the [
9 (C, I) is a

composition of overshears.
Therefore, taking C = 1, we get that q(1, I) = 5 (I) can be

approximated by the composition of overshears.
If we assume that det(⇡ 5 (I)) ⌘ 1 then by Lemma 2.19,

we get that div- (I) = 0. Then, from Proposition 2.16, we get
that we can choose the polynomial vector field / :

9
such that

div/ :
9
(I) = 0. In view of Proposition 2.17, we will get that

map [ 9 (C, I) is composition of shear. ⇤

3. Approximation of biholomorphisms

by automorphisms of Cn

In this section, we discuss about the approximation of
the biholomorphic maps from domains in C= by finite
composition of shears and overshears. This can be thought of
a generalization of the corresponding question in Section 2,
where the domain is the whole of C=. The question was
also considered by Andersén and Lempert [2]. In order to go
further into our discussion we need the notion of the Runge
domain, which is a fundamental concept in the function theory
of several complex variables.

Definition 3.1. A domain ⌦ ✓ C= is said to be a Runge
domain if every holomorphic function 5 : ⌦ ! C can be
approximated by holomorphic polynomials in I1, I2, . . . , I=

uniformly on every compact subset of ⌦.

In one variable Runge domains are the domains that are
simply connected. In higher dimensions, there is no such
characterization of Runge domains. There are some known
classes of domains that are Runge; for instance, convex
domains, polynomial polyhedra etc. From Hömander’s
theorem, it follows that the domains of the form {I 2
C= |i(I) < U}, where U > 0 and i : C= ! R is a
plurisubharmonic (i.e. subharmonic in each complex line)
function on C=, are Runge. In [5], Al kasimi proved
that any starshaped domain is Runge. Recently, Hamada
[9, Theorem-3.1] proved that for a given matrix � with
inf kI k=1{h�I, Ii} > 0, the domains ⌦ ⇢ C= with 4�C �⌦ ✓ ⌦,
for all C � 0, are Runge. These domains are called spirallike
domains with respect to �. It is proved in [4] that a spirallike

domain with respect to an asymptotically stable vector field is
Runge. The reader is referred to [4] for details.

Let us now proceed with our discussion of the
approximation of biholomorphism for the starshaped domain.
The following theorem was proved by Andersén and Lempert
[2, Theorem 2.1].

Theorem 3.2 (Andersén, Lempert 1992, [2]). Let ⌦ be a
starshaped domain C= and � : ⌦ ! C= be a biholomorphic
map such that �(⌦) is Runge. Then � can be approximated
uniformly on compact subsets by compositions of shears and
overshears. If det⇡� ⌘ 1, then � can be approximated
uniformly on compact subsets by the composition of shears.

Note that the Runge property of the domain and the range of
� in Theorem 3.2 is crucial. The crux of the above theorem
is taken by Forstnerič and Rosay [7] and formulated the
following general result that found several applications.

Theorem 3.3 (Forstnerič Rosay 1993, [7]). Let ⌦ be an
open set in C= (= � 2). For every C 2 [0, 1], let �C be a
biholomorphic map from ⌦ into C= of class C2 in (C, I) 2
[0, 1] ⇥⌦. Assume that each domain ⌦C = �C (⌦) is Runge in
C=.

If �0 can be approximated on ⌦ by holomorphic
automorphisms of C=, then for every C 2 [0, 1] the map �C
can be approximated on ⌦ by holomorphic automorphism of
C=. If in addition ⌦ is a domain of holomorphy satisfying
�
=�1(⌦;C) = 0 and if every �C is volume preserving (i.e.,

its Jacobian determinant equals one), and if �0 can be
approximated on ⌦ by volume preserving automorphisms of
C=, then every �C can be approximated on ⌦ by volume
preserving automorphisms of C=.

Conversely, if ⌦ is a pseudoconvex Runge domain in C=

and �1 : ⌦ ! C= is a biholomorphic map that can be
approximated on ⌦ by automorphisms of C=, then for every
compact set  ⇢ ⌦ there is an open set ⇡, such that  ⇢
⇡ ⇢ ⌦, and a family of biholomorphic maps �C : ⇡ ! C=,
of class C1 in (C, I) 2 [0, 1] ⇥ ⇡, such that �0 is the identity
map, �1 is the given map, and every �C can be approximated
by automorphisms of C=, and �C (⇡) is Runge in C= for each
C 2 [0, 1].

The class of domains in C= for which the biholomorphic
maps can be approximated by automorphisms of C=

(equivalently by finite compositions of shears and overshears)
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are important. Applying Theorem 3.2, Arosio-Bracci-Wold
[3] found a solution to the following open problem for the
case of the starshaped domain.
Open question: Given a Herglotz vector field⌧ (I, C) of order
3 2 [1, +1] on ⇡, does there exist a univalent solution ( 5C :
⇡ ! C=) of the following Loewner PDE:

m 5C (I)
mC

= �35C (I) (⌧ (I, C)). (3.1)

Equivalently, does the Loewner range ' of the Herglotz vector
field ⌧ (I, C) embed as a domain in C=?

For the notion of Herglotz vector field and Loewner theory
see [3,8]. It follows from the proof of [3, Theorem 3.4] that, if
⌦ ⇢ C= is a Runge domain such that every biholomorphism
of ⌦ with Runge image can be approximated by holomorphic
automorphisms of C=, then the associated Loewnwer range of
a given Herglotz vector field ⌧ defined on the domain ⌦ can
be embedded as a domain in C=.

While the Theorem 3.3 provides a su�cient condition
for approximating a biholomorphism by automorphisms of
Aut(C=), finding an isotopy map that satisfies this condition
for a given domain ⌦ and biholomorphism is by no means
a straightforward task. Identifying such an isotopy �C in
practice can be quite challenging. We now point out few
generalizations of Theorem 3.2 where the explicit isotopy is
constructed for certain classes of domains. For a square matrix
� let f(�) denote the set of all eigenvalues of the matrix �
and :+(�) := max{Re_ |_ 2 f(�)}, :� (�) := min{Re_ |_ 2
f(�)}.

The following result, due to Hamada [9], reveals that, on a
spirallike domain with respect to a certain linear vector field,
the Theorem 3.3 can be applied.

Theorem 3.4 ([9, Theorem 4.2]). Let ⌦ be a domain
containing the origin that satisfies the following conditions:
4
�C �

F 2 ⌦ for all F 2 ⌦, where � 2 "= (C) such that
inf kI k=1 Reh�I, Ii > 0. If :+(�) < 2 inf kI k=1 Reh�I, Ii,
where f(�) is the spectrum of �, then any biholomorphism
q : ⌦ ! C= with q(⌦) is Runge, can be approximated
uniformly on compacts of ⌦ by automorphisms of C=.

The results presented in [4, Theorem 1.9] generalize
Theorem 3.4 by extending the scope of domains in
which every biholomorphism with a Runge image can be
approximated by automorphisms of C=. We mention one
result here from [4].

Theorem 3.5. Let � 2 ⌧! (=,C) with 2:+(�) < :� (�) and
⌦ ⇢ C= be a domain containing the origin and spirallike
with respect to %�1

�% for some % 2 ⌧! (=,C). Assume that
� : ⌦! �(⌦) is biholomorphism with �(⌦) Runge. Then:

(i) The map � can be approximated by elements of Aut(C=)
uniformly on every compact subset of ⌦.

(ii) If ⌦ is pseudoconvex and �� ⌘ 1 then � can be
approximated by elements of Aut1(C=) uniformly on
every compact subsets of ⌦.

(iii) Let = = 2< and (I1, I2, . . . , I<,F1,F2, . . . ,F<) be a
coordinate of C=. Assume that ⌦ ✓ C= is pseudoconvex
domain and l =

Õ
<

9=1 3I8 ^ 3F8 is a symplectic form on
C=. If � 2 (?(<,C) := {� 2 ⌧; (=,C) : �C �� = �},

where � =

"
0 �<

��< 0

#
and �⇤(l) = l then � can be

approximated by AutB? (C=) := { 2 Aut(C=) :  ⇤(l) =
l}, where l is the standard symplectic form on C=.

The following example from [4, Example 6.13] proves
that Theorem 3.5 enlarges the class of domains where every
biholomorphic with Runge image can be approximated by
elements of Aut(C=).

Example 3.6. Let � = _�= +N , where N is a = ⇥ = matrix
with ones in the first diagonal above the main diagonal and
zeros elsewhere and _ = _1 + 8`1, with _1 < 0. Then
⌦ := {(I1, I2, . . . , I=) :

��
I=�1 � I=

_1
ln |I= |

��
< 1} is a spirallike

domain with respect to �.

Similar results about non-linear vector fields are achieved in
[4, Theorem 1.10].

Another application of the approximation of biholomorphic
maps is the existence of the Fatou–Bieberbach domain.

Definition 3.7 (Fatou–Bieberbach Domain). A proper
sub-domain ⌦ of C= that is biholomorphic to C= is
called a Fatou-Bieberbach domain. A biholomorphic map
� : C= ! ⌦ onto such ⌦ (and its inverse map) is called a
Fatou-Bieberbach map.

In view of the Riemann mapping theorem, this phenomenon
happens only when = > 1. Let � 2 Aut(C=) and let �: denote
its :-th iterate of the map � define by �: := � � � � · · · � �|             {z             }

:�times

.

A point ? 2 C= for which � (?) = ? is called a fixed point
of �. A fixed point ? is said to be attracting if all eigenvalues
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_ 9 of the derivative �0 (?) satisfy |_ 9 | < 1, and is said to be
repelling if all eigenvalues satisfy |_ 9 | > 1. In the attracting
case, the set

⌦� ,? := {I 2 C= : lim
:!1

�
: (I) = ?},

is known as the basin of attraction of the point ?.

Theorem 3.8 ([6, Theorem 4.3.2]). If = > 1 and ? 2 C= is
an attracting fixed point of a holomorphic automorphism � 2
Aut(C=), then the attracting basin ⌦ of � 2 Aut(C=)(defined
as above) is Runge. Moreover, there exists a biholomorphic
map k from ⌦ onto C=. If the Jacobian �� is constant, then k
can be chosen such that �k ⌘ 1.

From [7, Proposition 1.2] it follows that A Fatou-Bieberbach
domain ⌦ ⇢ C= is Runge in C= if and only if the
associated Fatou-Bieberbach map � : C= ! ⌦ is a
locally uniform limit of holomorphic automorphisms of
C=. Theorem 3.8 demonstrates that an attracting basin
associated with a holomorphic automorphism of C= is a
Runge domain within C=. Notably, examples of non-Runge
Fatou-Bieberbach domains can be found in [13,12]. The
following is a corollary of Theorem 3.8 and Theorem 3.2

Corollary 3.9. Let � 2 Aut(C=) with fixed point ? and ⌦
be the basin of attraction of � at the point ?. Then any
biholomorphism � : ⌦! �(⌦) with �(⌦) being Runge can
be approximated by elements of Aut(C=).

Proof. Since from Theorem 3.8, it follows that there exists
a biholomorphism ⌧ : C= ! ⌦ where ⌦ is Runge, by
Theorem 3.2, it follows that ⌧ is a limit of automorphisms
of C=. Therefore, using [7, Proposition 1.2(a)], we obtain that
⌧

�1 can also be approximated by elements of Aut(C=). If
� : ⌦! �(⌦) is a biholomorphism with �(⌦) being Runge
then � � ⌧ : C= ! �(⌦) is a biholomorphism with �(⌦)
is Runge. Hence, again from Theorem 3.2, it follows that
� � ⌧ is limit of Aut(C=). Here ⌧�1 is also a limit of a
sequence of automorphisms of C=. Hence, � is also the limit
of automorphisms of C=. ⇤
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1. Quasiconformal mappings and

quasiconformal extensions

Let C be the finite complex plane and D be the open unit disk.
The complement of the closed unit disk D will be denoted
by D⇤. Let bC be the Riemann sphere C [ {1}. Let ⌦1 and
⌦2 be domains in bC. A sense-preserving homeomorphism 5 :
⌦1

>=C>����! ⌦2 is called :-quasiconformal, : 2 [0, 1), if it has
locally !

2-derivatives on ⌦1\{ 5 �1(1),1} (in the sense of
distribution) satisfying

| 5Ī |  : | 5I |, almost everywhere on ⌦1,

where, 5I := m 5 /mI and 5
I

:= m 5 /mI. The quantity
` 5 := 5Ī/ 5I is called the complex dilatation of 5 . If 5 is
:-quasiconformal, then it is also called  -quasiconformal,
where,  := (1 + :)/(1� :) 2 [1,1). If : = 0 or  = 1, then
by virtue of the Weyl’s lemma, 5 will be conformal on ⌦1.
The simplest example of a quasiconformal mapping which is
not conformal, is the a�ne mapping

5 (I) = 0I + 1I, I 2 C (0, 1 2 C, 0 < |1 | < |0 |).

It can be shown that 5 maps the unit circle mD := {I 2
C : |I | = 1} onto an ellipse whose major and minor axes
are given by |0 | + |1 | and |0 | � |1 | respectively. Hence here,
5 is a |1 |/|0 |-quasiconformal or, |0 |+|1 |

|0 |� |1 | -quasiconformal. For
another example, we consider the function

5 (I) = |I |U�1
I, I 2 C, U 2 (0, 1).

Here, 5 maps D onto itself and it is 1�U
1+U -quasiconformal or,

a 1/U-quasiconformal map. A key result in understanding
planar quasiconformal mappings is the measurable Riemann

mapping theorem (henceforth, this theorem will be
abbreviated as MRMT) of Ahlfors and Bers. We first state
this theorem. Let !1(C) be the set of all essentially bounded
measurable functions defined in C and ` 2 !

1(C) with
k`k1 < 1. For every such ` in the open unit ball of !1(C),
there exists a q.c. mapping 5 : bC! bC satisfying the Beltrami
partial di↵erential equation

m 5

mĪ

= `(I) m 5
mI

for a.e. I 2 C. (1.1)

This map 5 is a homeomorphism of bC onto itself and it is
determined by the Beltrami coe�cient `, uniquely up to post
compositions of Moebius transformations of bC. Now, one may
inquire about the Beltrami PDE (1.1) in a domain ⇡ < bC, for
example, in D. By a result of A. Mori (c.f. [25, Theorem 4]),
if F = 5 (I) be a :-quasiconformal mapping of D onto D,
then 5 can be extended to a topological mapping of the closed
disc D onto D. Thus, by this result, every q.c. automorphism
5 : D ! D extends homeomorphically to mD and hence, it
extends to a q.c. map of bC by the formula

5 (I) :=
1

5 (1/Ī)
, I 2 D⇤

.

A little computation will show that the Beltrami coe�cient `
of this extension satisfies

`(I) =
✓
I

2

Ī
2

◆
`(1/Ī). (1.2)

Now, if � : bC ! bC is a q.c. map solving the Beltrami
PDE (1.1) with ` satisfying (1.2), then ⌧ (I) := 1/� (1/Ī) is
another solution with the same Beltrami coe�cient. Thus, by
the MRMT, to every ` in the open unit ball of !1(D), there
corresponds a q.c. automorphism 5 : D ! D determined
uniquely up to Moebius transformations of D.
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It is sometime useful to work on the exterior of the unit
disc D, i.e., in D⇤. Now, for every ` in the open unit
ball of !1(D⇤), there corresponds a unique quasiconformal
automorphism 5 : D⇤ ! D⇤ such that 5 (1) = 1 and
5 (1) = 1. In order to prove this, consider:

m�

mĪ

= `1(I)
m�

mI

, I 2 bC
with � (1) = 1, � (1) = 1, � (0) = 0, where

`1(I) =
8>><
>>:
`(I), I 2 D⇤⇣
I

2

Ī
2

⌘
`(1/Ī), I 2 D.

Now, take 5 = � |D⇤ .
Let A be the class of all analytic functions 5 on D with

the standard normalizations 5 (0) = 0 = 5
0 (0) � 1, and S be

the class of all univalent functions in A. Hence, each function
5 2 A has the following Taylor series expansion

5 (I) = I +
1’
==2

0=I
=

, I 2 D. (1.3)

For every ` in the open unit ball of !1(D⇤), there corresponds
a conformal map 5 2 S . To see this, we consider the Beltrami
PDE

m�

mĪ

= `2(I)
m�

mI

with � (1) = 1, � (0) = 0, m�
mI

|I=0 = 1, where

`2(I) =
8>><
>>:
`(I), I 2 D⇤

0, I 2 D.

Therefore, we now let 5 = � |D. Hence, these functions are
conformal on D and have quasiconformal extensions on the
exterior of D. In this note, we mainly focus on the conformal
maps which are defined on a subdomain of the complex plane,
but admit quasiconformal extensions to C or to bC. We now
present here a precise definition of this extension.

Definition 1.1. Let : 2 [0, 1). We say that a univalent
(holomorphic or meromorphic) function 5 defined on a
domain ⌦ ⇢ bC admits a :-quasiconformal extension to bC if
there exists a :-quasiconformal mapping � : bC ! bC such
that � |⌦ = 5 . Moreover, a holomorphic function 5 : ⌦! C,
(⌦ ⇢ C), is said to admit a :-q.c. extension to C if there exists
a :-q.c. mapping � : C! C such that � |⌦ = 5 .

Using the removability property of quasiconformal mappings,
one can conclude that 5 is :-q.c. extendible to C if and only

if it admits a :-q.c. extension � : bC ! bC with � (1) = 1.
Due to this fact, q.c.-extendibility of a function 5 to C is,
in fact, a bit stronger condition than the q.c.-extendibility
to bC. Normalized holomorphic univalent maps defined on
D having quasiconformal extensions to bC play an important
role in Teichmüller theory as they can be identified with the
elements of the universal Teichmüller space (see e.g. [24,
chap. III]). This is one of the main reasons to study
quasiconformal extensions. We will see various examples of
conformal mappings that have quasiconformal extensions in
our discussion. But, it is interesting to note that there are
many conformal maps that do not admit any quasiconformal
extensions. For example, the Koebe function I/(1 � I)2

maps the unit disk D onto the slit domain C\(�1,�1/4].
This function has no quasiconformal extension to C. The
Joukowsky transformation 5 (I) = I + 1/I, I 2 D and
the map 5 (I) = I + I

2/2, I 2 D also do not admit
any quasiconformal extension. Therefore, it is important to
have su�cient conditions for quasiconformal extensions of
conformal mappings.

2. Su�cient conditions for

quasiconformal extensions

Let S: be the class of all functions in S that have :-q.c.
extensions to C. Ahlfors and Weill (c.f. [1]) proved a
quasiconformal analogue of the famous Nehari’s univalence
criteria involving the Schwarzian derivative ( 5 of a locally
univalent function 5 , where

( 5 (I) :=
✓
5
00 (I)
5
0 (I)

◆ 0
� 1

2

✓
5
00 (I)
5
0 (I)

◆2

, I 2 D.

They proved that, if 5 is analytic and locally univalent in D
and

|( 5 (I) |  2: (1 � |I |2)�2
, I 2 D,

then 5 2 S: . Conversely, if 5 2 S: (Kuhnau, 1969; Lehto,
1971), then

|( 5 (I) |  6: (1 � |I |2)�2
, for all I 2 D.

In 1972, Becker proved a criterion for a quasiconformal
extension involving the pre-Schwarzian derivative of a locally
univalent function. Indeed, he established
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Theorem 1 (Becker ([4])). If A 3 5 is locally univalent
and

(1 � |I |2) |I 5 00 (I)/ 5 0 (I) |  : , I 2 D,

for some : 2 (0, 1), then 5 2 S: and 5 has :-quasiconformal
extension of the form

� (I)=
8>><
>>:
5 (I), I 2 D
5 (1/I) + (I � 1/I) 5 0 (1/I), I 2 D⇤ := {I : |I | � 1}.

Later, in 1974, Ahlfors improved the Becker’s criterion as
following: If 5 2 A be locally univalent and there exists a
constant 2 2 C with |2 |  : such that

��
2 |I |2 + (1 � |I |2)I 5 00 (I)/ 5 0 (I)

��  : , I 2 D,

for some : 2 (0, 1), then 5 2 S: . In 1984, Brown([9])
established criteria for quasiconformal extensions of starlike,
convex, and analytic functions with bounded derivative, using
geometric characterization of the image domain. Brown
proved that, if 5 2 A and

I 5
0 (I)
5 (I) � 1 + :I

1 � :I or 1 + I 5
00 (I)
5
0 (I) � 1 + :I

1 � :I ,

then 5 2 S⇤ \ S: , or 5 2 C \ S: , respectively. Here, S⇤

and C denote the classes of starlike and convex functions
on D respectively. We clarify here that the symbol � stands
for the well-known notion of subordination. The explicit
:-quasiconformal extension of 5 is given below:

� (I) =
8>><
>>:
5 (I), I 2 D
|I | 5 (I/|I |), I 2 D⇤

.

Brown also proved that, if 5 2 A with

|I2(_ 5 0 (I) � 1) |  : , I 2 D, (_ 2 C, a constant),

then 5 2 S: , and has the :-q.c. extension:

� (I) =
8>><
>>:
5 (I), I 2 D
5 (1/I) + (1/_) (I � 1/I), I 2 D⇤

.

In [29], Sugawa obtained the above results as an application
of holomorphic motions and the _-Lemma. Quasiconformal
extension criteria for functions in the class of strongly starlike
functions of order U 2 (0, 1), denoted by S⇤(U), was obtained
by Fait et al. (compare [12]). Let 5 2 A. It is well-known that,
5 2 S⇤(U) ⇢ S if and only if����arg

I 5
0 (I)
5 (I)

����  cU

2
, I 2 D.

Fait et al. proved that each function 5 2 S⇤(U) ⇢ S admits
sin(cU/2)-quasiconformal extension onto bC, which can be
given explicitly as:

� (I) =
8>><
>>:
5 (I), I 2 D
( 5 (48\ ) )2

5 (1/I) , I 2 D⇤
,

where, 5 (48 \ ) is uniquely determined by the equation

arg 5 (1/I) = arg 5 (48 \ ), I 2 D⇤
.

We add here that, Sevodin ([28]) proved q.c. extension
criterion for strongly spirallike functions (see also [30]).

In 1972, Becker proved a remarkable result concerning
quasiconformal extensions of univalent functions with the
help of Loewner chain. Let

5C (I) = 5 (I, C) := 4C I +
1’
==2

0= (C)I=, (I, C) 2 D ⇥ [0,1),

(2.1)
be a family of functions. Such a family 5C (I) is called a
Loewner chain if 5C (I) is analytic and univalent in D for each
fixed C 2 [0,1) and satisfies 5B (D) ( 5C (D) for 0  B <

C < 1. Pommerenke (see [26, Theorem 6.2]) proved a
necessary and su�cient condition for a family of functions
5 (I, C) to be a Loewner chain. Later, Becker proved the
following result:

Theorem 2 (Becker ([4]). Let

5C (I) = 5 (I, C), (I, C) 2 D ⇥ [0,1)

be a Loewner chain such that the Herglotz function ? in the
Loewner-Kufarev PDE

m 5 (I, C)
mC

= I 5 0 (I, C)?(I, C)

lies within the disk D(:) for all I 2 D and for almost all
C 2 [0,1), where,

D(:) :=
⇢
F 2 C :

����F � 1
F + 1

����  :

�

=
⇢
F 2 C :

����F � 1 + :2

1 � :2

����  2:
1 � :2

�
( {I : Re I > 0};

then for each C � 0, each function 5C admits a
:-quasiconformal extension to C fixing infinity and such an
extension for the initial member 50 is given by

� (I) =
8>><
>>:
50(I) = 5 (I, 0), I 2 D
5 (I/|I |, log |I |), I 2 D⇤

.
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The extension � of 5 = 50 in this result is called a Becker
extension of 5 2 S . Using Pommerenke’s and Becker’s
criteria, Hotta (c.f. [16]) constructed suitable Loewner chains
to prove the quasiconformal extension criteria for various
subclasses of S , which were earlier proved by Brown
in [9]. Using this method, the author of this survey and
G. Satpati proved the criterion for quasiconformal extension
for functions in U_ ⇢ S , (_ 2 (0, 1)), (see f.i. [8]).
We mention here that, U_ consists of all functions in A that
satisfy �����

✓
I

5 (I)

◆2

5
0 (I) � 1

����� < _
for I 2 D. In [17], Hotta modified the Loewner chain in (2.1),
replacing the leading coe�cient 5 0 (0, C) = 4C by any complex
valued function 01(C), such that |01(C) | ! 1 as C ! 1.
In the same article, Hotta also proved the quasiconformal
extension criteria for U-spirallike functions (�c/2 < U <

c/2). A function 5 2 A is said to be U-spirallike, if

Re{4�8UI 5 0 (I)/ 5 (I)} > 0, I 2 D.

For U = 0, we have the class of starlike functions.
Pommerenke ([26, Chap. 6]) constructed the following
Loewner chain for an U-spirallike function:

5 (I, C) = 4 (1+80)C 5 (4�80C I), (0 = tanU), I 2 D, C 2 [0,1).

Hotta (see [17]) used this Loewner chain to prove the
following: If 5 2 A such that I 5 0 (I)/ 5 (I) 2 D(: , U),
where D(: , U) is the following hyperbolic disk in the tilted
half-plane {I 2 C : Re (4�8UI) > 0}:

D(: , U) :=
⇢
F 2 C :

���� F � 1
F + 428U

����  :

�

=
⇢
F 2 C :

����F � 1 + 428U
:

2

1 � :2

����  2: cosU
1 � :2

�
;

then 5 is U-spirallike which admits a :-q.c. extension of the
form:

� (I) =
8>><
>>:
5 (I), I 2 D
|I |1+80 5 (I/|I |1+80), I 2 D⇤

.

We remark here that, the quasiconformal extensibility for an
U-Robertson function was also obtained by Hotta and Wang
in [18]. We mention here that, a function 5 2 A is said to be
U-Robertson (�c/2 < U < c/2), if

Re
⇢
4
�8U

✓
1 + I 5

00 (I)
5
0 (I)

◆�
> 0, I 2 D.

In [27], Royster studied the problem for univalence of the
following two integral transforms;

5U (I) =
π

I

0
( 5 0 (Z))U dZ and �U (I) =

π
I

0

✓
5 (Z)
Z

◆
U

dZ ,

where 5 2 S . Here we note that, the powers in the above
two definitions are defined via the branch of log 5 0 (Z) for
which log 5 0 (0) = 0. Hotta and Wang obtained criteria
for quasiconformal extensions of the above mentioned two
integral transforms in [19].

We now turn our attention to the meromorphic case. Let
⌃ be the class of all meromorphic univalent functions on D
having simple pole at I = 0 with residue 1. Therefore, each
5 2 ⌃ has the Laurent series expansion as

5 (I) = 1
I

+
1’
==0

1=I
=

, I 2 D. (2.2)

Let ⌃: be the class of all functions in ⌃ that admit
:-quasiconformal extensions to bC. We first mention here that,
a su�cient condition was proved by Krzyż in [22] for a
function in ⌃ to belong in the class ⌃: . This result states that
if 5 2 ⌃ is of the form 5 (I) = 1/I + l(I), I 2 D, where l
is an analytic function on D such that |l0 (I) |  : for some
: 2 (0, 1), then 5 2 ⌃: . The :-quasiconformal extension of
5 is given by

5 (I) = 1
I

+ l(1/I), I 2 D⇤
.

Let ⌃(?) be the class of all meromorphic univalent functions
having pole at some point ? 2 [0, 1) with residue 1. Thus, any
5 2 ⌃(?) has the Laurent expansion of the following form:

5 (I) = 1
I � ? +

1’
==0

1=I
=

, I 2 D. (2.3)

In [6], we defined the class ⌃: (?) as the class of all
functions in ⌃(?) that have :-quasiconformal extensions to bC.
We proved that, if 5 (I) = 1/(I � ?) + l(I) 2 ⌃(?) (l being
analytic in D) such that |l0 (I) |  : (1 + ?)�2 for I 2 D, then
5 2 ⌃: (?), (compare [6, Theorem 2]). The :-quasiconformal
extension of 5 is given by

5 (I) = 1
I � ? + l(1/I), I 2 D⇤

.

Next, we discuss about the area distortion by
quasiconformal mappings. In 1955, Bojarski first considered
the area distortion problem for a general quasiconformal
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mapping. In 1994, Astala (c.f. [2]) proved the following
result: Let 5 : D ! D be a :-quasiconformal mapping with
5 (0) = 0, then

| 5 (⇢) |  " ( ) |⇢ |1/ ,

for all Lebesgue measurable sets ⇢ ⇢ D, where  =

(1 + :)/(1 � :) � 1, and the constant " ( ) = 1 +O( � 1),
as  ! 1. Here, the notation | · | stands for the area of a set in
the complex plane. Later, Eremenko and Hamilton (compare
[11]) proved the following area distortion inequalities for
functions belonging to the class ⌃: .

Theorem 3. If 5 2 ⌃0
:
(10 = 0) and ⇢ be a Lebesgue

measurable subset of D, then

| 5 (⇢) |  c
1�1/ |⇢ |1/ ,

whenever 5 is conformal on ⇢ , and

| 5 (⇢) |   |⇢ |,

whenever 5 is conformal on C\⇢ . Also, for any arbitrary
Lebesgue measurable subset ⇢ of D,

| 5 (⇢) |   c1�1/ |⇢ |1/ .

All the constants in the last three inequalities are best
possible.

Astala and Nesi (c.f. [3]) also proved the weighted area
distortion inequalities for functions in the class ⌃0

:
. The

corresponding area distortion inequalities for functions
belonging to the class ⌃0

:
(?) can be found in [7].

3. Extremal problems for conformal mappings

having quasiconformal extensions

The problem of estimating bounds for the moduli of the
Taylor and the Laurent coe�cients for functions in the
classes S: and ⌃: were well-researched by many eminent
mathematicians. We present here a brief overview of this. Let
S1
:

consists of all functions in S: which fix the point infinity,
i.e. 5 (1) = 1. If 5 2 S1

:
having an expansion of the form

(1.3) in D, then for = = 2, R. Kühnau (in 1969) proved
the sharp estimate |02 |  2: , where equality holds for the
following function:

5: (I) =
8>><
>>:

I

(1�:I)2 , I 2 D
II

(
p
I�: pI)2 , I 2 D⇤

.

(3.1)

It is easy to verify that 5: 2 S: with |02 | = 2: . In 1968,
Krushkal ([21]) gave an asymptotic bound for the Taylor
coe�cients in the following form:

|0= | 
2:
= � 1

+O(:2), : ! 0,

for all = � 2, where, the ratio O(:2)/:2 is uniformly bounded
for all :  :0 < 1, where :0 is a fixed number. The equality
|0= | = 2:/(= � 1), for = � 3, occurs for the mapping

5:,=�1(I) := ( 5: (I=�1))1/(=�1)

= I + (2:/(= � 1))I= + 02=�1I
2=�1 + · · · , I 2 D,

where, 5: is given by (3.1). In 1995, Krushkal ([20]) also
claimed that:

|0= |  2:/(= � 1), (3.2)

for 0 < :  1/(=2 + 1) and = � 3. Let (⌫
:

be the class of all
5 2 S admitting Loewner’s representation with the Herglotz
function ? normalized by ?(0, C) = 1 a.e. C � 0 and satisfying
?(D, C) ⇢ D(:). It was shown that (⌫

:
( S: , (see [14]).

Gumenyuk and Hotta proved (see [15]) that the following
sharp estimate holds for functions in (⌫

:
:

|03 |  : (1 + 41�1/: (1 + :)).

This disproves a result of S. Krushkal (compare with (3.2))
which was proved in [20], at least for 03. In 1976, Lehto
proved asymptotic bounds for the Laurent coe�cients for
functions in ⌃: (see f.i. [24, p. 74]). Indeed, Lehto obtained
that, if 5 2 ⌃0

:
having expansion of the form (2.2), then

|1= | 
2:
= + 1

+O(:2), = � 1.

If

5= (I) =
8>><
>>:

�
I
� (=+1)/2 + :I (=+1)/2�2/(=+1)

, I 2 D,⇣
I
� (=+1)/2 + :I� (=+1)/2

⌘2/(=+1)
, I 2 D⇤

,

then 5= 2 ⌃0
:

having complex dilatation

` 5= (I) = : (I/I) (=+3)/2
, I 2 D⇤

with |1= | = 2:/(= + 1). Lehto also established the exact
estimate |1= |  2:/(=+1), for = = 1, 2. It is worth to mention
here that, the exact coe�cient estimates of |0= | for S: and of
|1= | for ⌃: are still open for all = � 3.

In this survey, finally, we briefly discuss on area theorems
for meromorphic univalent functions having quasiconformal
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extensions. In [23], Lehto refined the Bieberbach-Gronwall
area theorem for functions in ⌃: . This result states that if
5 2 ⌃: having expansion (2.2) in D, then

1’
==1

=|1= |2  :
2
,

where, equality holds if and only if

5 (I) = 1
I

+ 10 + 11I, I 2 D, with |11 | = : .

Moreover, its :-quasiconformal extension is given by setting

5 (I) = 1
I

+ 10 +
11

Ī

, I 2 D⇤
.

Considering a nonzero simple pole in the open unit disc,
Chichra (c.f. [10]) proved the following Area Theorem for
functions in the class ⌃(?), ? 2 (0, 1). Let 5 2 ⌃(?) have
expansion of the form (2.3), then

1’
==1

=|1= |2  1
(1 � ?2)2 ,

where, equality holds for the function

5 (I) = 1
I � ? + 10 +

I

1 � ?2 , I 2 D.

Inspired by the Lehto’s Area theorem for functions in ⌃: , the
following Area theorem for the class ⌃: (?) was obtained in
[6, Theorem 1]:

Theorem 4. Let 0  : < 1 and 0  ? < 1. Suppose that
5 2 ⌃: (?) has expansion of the form (2.3). Then

1’
==1

=|1= |2  :
2

(1 � ?2)2 .

Here, equality holds if and only if 5 is of the form

5 (I) = 1
I � ? + 10 +

11I

1 � ?I , I 2 D,

where, 10 and 11 are constants with |11 | = : . Moreover,
a :-quasiconformal extension of this 5 is given by setting

5 (I) = 1
I � ? + 00 +

11

Ī � ? , I 2 D⇤
.

We urge interested readers to go though the articles [5,6] for
more details and other related open problems for functions in
the class ⌃: (?).
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Twenty Ninth ICFIDCAA-2023
Conference Report

The 29th “International Conference on Finite or Infinite
Dimensional Complex Analysis and Applications” was being
hosted by the Department of Mathematics, Pondicherry
University from 21st to 25th August 2023. The five-day
conference was graced by international delegates from
Russia, Japan, South Korea, Serbia, Croatia, Malaysia and
USA and over 100 Indian participants.

Followed by the inaugural ceremony, the Keynote Speaker
Prof. S. Ponnusamy delivered a lecture on “Landau-Bloch
Theorems for Analytic, Meromorphic, and Harmonic
Functions”, followed by a talk of Prof. Sudeb Mitra, City
University of New York on “Tame Quasiconformal Motions”.
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An invited talk by Prof. Allu, was delivered. In addition, many
short talks and paper presentation sessions were held after the
invited talks.

The second day commenced with the plenary talks by
Prof. Armen Sergev “On Mathematical Problems in the
Theory of Topological Insulators”; Prof. Toshiyuki Sugawa,
on “Quasiconformal distortion of hyperbolic distances”;
Prof. Jaydeb Sarkar on “Commutant lifting theorem on the
polydisc” ; and Prof. Kaushal Verma, on “A report on
the Grauert metric”. The invited Talks were presented by
Prof. Krishnendu Gongopadhyay, and Prof. Sanjeev Singh.
The parallel paper presentation sessions were held after the
invited talks.

The third day began with the Plenary Talks by Prof.
Solodov Aleksei, on “Extremal problems on classes of
holomorphic self-maps of a disc with fixed points” and
Prof. Tibor K. Pogany, “On Rice–Middleton model of
probability distribution of sinusoidal signal combined with
Gaussian noise”. The plenary talks were followed by Invited
Talks by Prof. Boo Rim Choe, Prof. Swadesh Kumar Sahoo,
Prof. Jugal K Prajapat, Prof. Ritu Agarwal. In addition to the
invited talks, the paper presentation sessions were held which
included presentations by professors and research scholars.

The fourth day began with the Plenary Talks by
Prof. Hiroshi Yanagihara, on “Loewner Theory on Analytic
Universal Covering Mappings” and Prof. Tirthankar
Bhattacharyya, on “Approximation by inner functions -
a Hilbert space approach”. The invited talks were given
by Prof. See Keong Lee, Prof. Vesna Todorcevic, and
Prof. A. Sairam Kaliraj.

The fifth day invited talks were given by
Prof. Aleksandr Komlov, and Prof. S. N. Fathima.
A valedictory program was held and Prof. Gurmeet Singh,
Honourable Vice chancellor, Pondicherry University
delivered the presidential address and the conference was
o�cial concluded.

The conference was supported by National Board of Higher
Mathematics, Department of Science and Technology, New
Delhi and Pondicherry University.

Dr. Rakesh Kumar Parmar
Convener, ICFIDCAA-2023
Pondicherry University

Report on the International
Conference on Mathematics and

Computing-ICMC (January 04–07,
2024) and a Pre-Conference

National Symposium on
“Advanced Mathematical Methods”

(January 02–03, 2024)

The 10th edition of ICMC2024 and a Pre-Conference
National Symposium on “Advanced Mathematical Methods
was organized by Kalasalingam Academy of Research and
Education jointly with academic sponsorship of Ramanujan
Mathematical Society–RMS, Cryptology Research Society
of India-CRSI and Society for Electronics Transactions
and Security-SETS. The Symposium was sponsored partly
by National Board of Higher Mathematics-NBHM and the
conference was sponsored partly by Defence Research and
Development Organization-DRDO. There were eighteen
invited talks delivered by eminent professors from various
countries like USA, Australia, Turkey and India. The
conference received 286 research articles from which 40
articles were carefully selected and will be published with
SPRINGER in two volumes. Also, a panel discussion on
the “Importance of Mathematics and Computing for all
round development of our Nation” was held on 5th January
2024. The experts drawn from Chennai Mathematical
Institute-CMI, IIT Ropar, Ramanujan Institute of Advanced
Study in Mathematics-RIASM of University of Madras,
Society for Electronics Transactions and Security-SETS and
Madras School of Economics gave the onus of training to
the faculty members and research scholars. Accordingly
the experts have delivered special lectures and imparted
hands on training in problem solving. The conference
was attended by 200 participants from 10 countries
and the symposium was attended by 100 participants
from all over India. The programme has received an
overwhelming response and earned an excellent feedback
from all types of delegates. List of Invited Speakers
for the Symposium: Drs. Clare D’Cruz, G. P. Youvaraj,
Tapas Chatterjee, Gautham Sekar, Prem Lakshman Das.
List of Invited Speakers for the Conference is:
Drs. Elisa Bertino, Bhavani Thuraisingham, Muriel Medard,
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Ramamohanarao Kotagiri, Mohammad Obaidat,
Sedat Akleylek, Ekrem Savas, Clare D’ Cruz, R. K. Sharma,
Madhumangal Pal, Jaya N Iyer, Arvind Ayyar, Tanmoy Som,
A. K. B. Chand, Mark Sepanski, Vishnu Pendyala, and
Tanmay Basak.

Professors Debasis Giri, Saminathan Ponnusamy, and
Yegnanarayanan Venkataraman
ICMC-2024

Report on ICAADM 2024

10
th

International Conference on Applied Analysis

and Discrete Mathematics (ICAADM 2024) was
organized by Department of Mathematics, The
Gandhigram Rural Institute (Deemed to be University),
Gandhigram, Tamil Nadu, India during January 22–24,
2024. Prof. Uthayakumar, Co-Convener, delivered the
welcome address. Dr. R. Rajkumar, Convener of this
conference outlined the mechanics of this conference.
Prof. S. Ponnusamy, IIT Madras delivered the presidential
address. Prof. L. Rathakrishnan, Registrar (in charge),
Prof. M. G. Sethuraman, Dean, School of Sciences, GRI
have also addressed the gathering. Professors P. Kandaswamy
(Coimbatore), Mahyar Mahinzaeim (Germany),
Kurunathan Ratnavelu, (Malaysia), Kohilah Miundy,
(Malaysia) A. K. Nandakumaran, IISc, Awdhesh Prasad,
(Delhi), Rajesh Kannan, IIT Hyderabad gave invited/keynote
addresses. Prof. P. Balasubramaniam (Co-Convener)
delivered the vote of thanks. The book of abstracts of this
conference was released by the dignitaries. About 120
participants both from India and abroad participated in this
conference. More than hundred papers have been presented
in this conference. This conference was supported by DST,
SERB, CSIR and UGC.

Report on Workshop on Algebra,
Analysis and Number Theory-2024

The Department of Mathematics at The Gandhigram Rural
Institute (Deemed to be University), Gandigram, successfully
conducted a three-day workshop on Algebra, Analysis,

and Number Theory (WAANT-2024) from January 25–27,

2024. The event garnered participation of students from
various colleges in and around Dindigul and Madurai.
This workshop was to guide third year B.Sc., mathematics
students to explore the new way of understanding the
mathematical concepts. There were 45 students participated
in the workshop; 30 were from outside colleges, and the
remaining 15 from the host Institute.

The main idea of this workshop was to train students
as how to learn mathematics so that understanding is easy
and enjoyable. Topics from Algebra, Analysis and Number
theory were discussed. Professors R. Balasubramanian
(IMSc) - Number Theory, K. N. Raghavan (IMSc) - Algebra,
P. Veeramani (IITM) - Real Analysis, G. P. Youvaraj
(RIASM) - Complex Analysis were the resource persons.
There were 12 sessions, 4 each day. From the feedbacks
obtained, it was evident that students have enjoyed new ways
of learning and understanding mathematics. They expressed
desire for more such programmes.

This programme was supported by The National Academy
of Sciences (NASCI), Chennai Mathematical Institute
(CMI), The Institute of Mathematical Sciences (IMSc) and
Gandhigram Rural Institute-Deemed to be University.

International Workshop on
Geometric Function Theory

(IWGFT 2023)

August 18–20, 2023.

IIT Madras jointly with Forum d’ Analystes, Chennai, hosted
an International Workshop on Geometric Function Theory
(IWGFT 2023) during August 18–20, 2023, attracting more
than 114 participants, including the speakers from Japan,
Croatia, Russia, Serbia, China (online), and di↵erent parts of
India.

The workshop was, for the most part, focused on the
inspiring branches of Complex Analysis, namely, univalent
functions, hyperbolic-type geometry, function spaces, special
functions, harmonic and quasiconformal mappings, and
several complex variables. The primary emphasis of the
workshop was on training Ph.D. students, postdoctoral
fellows, and other young researchers, and promoting
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collaborative research involving all the participants. The
three-day workshop had several problem discussion sessions
from which participants benefited by gaining professional
knowledge and skills. Sixteen lectures were organized during
the workshop. Details are available at https://sites.
google.com/view/iwgft2023/schedule.

For the students’ benefit, the full length lecture materials
are being published in the Mathematics News Letter published
by Ramanujan Mathematical Society in three di↵erent issues.
It is our hope and intent that these materials will inspire
people working in the focused area of the workshop; indeed,
some of the talks also listed open problems in which readers
can engage in, and collaborate with workshop participants.

The organizing committee is thankful to the following
agencies for their financial support to organize the IWGFT
2023 successfully:

(i) Council of Scientific and Industrial Research (CSIR),
New Delhi

(ii) National Board for Higher Mathematics (NBHM), DAE,
Mumbai

(iii) Science and Engineering Research Board (SERB), New
Delhi

Organizers of the workshop:
Professors R. Balasubramanian, S. Ponnusamy, S. K. Sahoo.

Report on Teachers’ Enrichment
Workshop on Linear Algebra, Real

Analysis and Topology

Teachers’ Enrichment Workshop, for college teachers,
Research scholars was conducted at Department of
Mathematics, Mepco Schlenk Engineering College,
Sivakasi during November 27–December 02, 2023.
Drs. Arindama Singh, IITM-Linear Algebra, S. Ponnusamy,
IITM-Real Analysis, and G. P. Youvaraj, RIASM-Topology,
were the resource persons. The workshop focused on the
fundamentals and problem solving aspects. There were
30 college teachers (some from Kerala, Karnataka), and 5
research scholars. On each day, there were three 90 minutes
lectures followed by a 60 minutes tutorial session in problem
solving. The host institution provided free boarding and
lodging for resource persons and participants from for outside

the local area. Based on the feedback from direct and google
form, participants had benefited in improving mathematical
skills.

The workshop was supported by National Center for
Mathematics, and Mepco Schlenk Engineering College,
Sivakasi, Tamil Nadu.

Dr. G. P. Youvaraj Dr. R. Ratha Jeyalakshmi,
Academic Convener Local Organizer
Ramanujan Institute, Mepco Schlenk Engg. College,
University of Madras Sivakasi

Report on 38th Annual
Conference of the Ramanujan

Mathematical Society

The annual conference is one of the largest and most
important activities of the Ramanujan Mathematical Society
(RMS). The 38th Annual Conference of the RMS was held
at IIT Guwahati on December 22–24, 2023. There were a
total of 452 registered participants and a total of 13 symposia.
The topics addressed in these symposia consisted of almost
all main branches of mathematics; and notably Women in
Mathematics and History of Mathematics in India. The total
number of symposia talks was 180 and the conference also
had five plenary talks along with a public lecture on the
history of mathematics. On top of all, the annual conference
hosted a total of 145 contributed talks on various topics. This
time, approximately 26% of the participants were female. An
estimated quarter of the participants come from the north
eastern region. Seven out of thirteen organisers of symposia
are women.

This annual event was generously supported by the
Indian National Science Academy (INSA), the History of
Mathematics in India (HoMI), the National Board of Higher
Mathematics (NBHM), and IIT Guwahati.

Jaydeb Sarkar January, 2023
Academic Secretary, Ramanujan Mathematical Society

Sukanta Pati
Convenor, Local Organising Committee, IIT Guwahaty
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Announcement of IITH Institute
Postdoctoral Fellowship

(IITH-IPDF) (Call is Open now)

Aim: To attract and support early-career researchers
with exceptional academic potential to pursue independent
research under the mentorship of esteemed faculty.

No. of Fellowships and Stipend: 50; 75,000 INR p.m.
Duration: One year, with the possibility of renewal for an
additional year based on satisfactory performance.
Accommodation: On-campus accommodation will be
provided. No HRA will be applicable, in case the Fellow does
not wish to stay inside campus.
Submission of Applications: Feb 1, 2024 to Feb 26, 2024
(Online mode only; by Applicants directly while attaching
endorsements from you)

Details of Workshops/Conferences in India

For details regarding Mathematics Training and Talent Search Programme

Visit: https://mtts.org.in/programme/mtts2021/

For details regarding Annual Foundation Schools, Advanced Instructional Schools, NCM Workshops, Instructional Schools for

Teachers, Teacher’s Enrichment Workshops

Visit: https://www.atmschools.org/

Name: 26th Annual Conference of The Society of Statistics, Computer and Applications (SSCA) International Conference on Emerging
Trends of Statistical Sciences in AI and its Applications (ETSSAA-2024).
Date: February 26, 2024–February 28, 2024
Venue: Department of Mathematics and Statistics & Centre for Artificial Intelligence Banasthali Vidyapith, Banasthali-304022, Rajasthan.
Visit: https://tinyurl.com/SSCA26ConfRegistrationhttps://drive.google.com/file/d/1O9CRTs30P4N2JM38Hufh2MEw3Vu-

yEBh/view?usp=sharing

Name: International conference on Recent Advances in Applied Mathematics (RAAM 2024).
Date: July 03, 2024–July 05, 2024
Venue: Department of Mathematics, IIT (BHU), Varanasi, Uttar Pradesh, India.
Visit: https://conferences.iitbhu.ac.in/RAAM2024/

Name: International Conference on Computations and Data Science.
Date: March 08, 2024–March 10, 2024
Venue: Department of Mathematics, IIT Roorkee.
Visit: https://www.iitr.ac.in/cods24/index.html?

Announcement of results: March 31, 2024
Joining Date: April 15, 2024
Eligibility: Applicants must hold a Ph.D. degree in a relevant
field from a recognized university (IITH PhD graduates
are NOT eligible). Those who submitted the thesis are also
eligible.
Research Focus: Open to all disciplines
Mentorship: Each fellow will be assigned a faculty mentor
within their field of expertise as per the proposal submitted.
One faculty member can mentor only one applicant who

is selected for the program in this round.

Endorsements: Each faculty member can provide up to two

endorsements for potential applicants. In case, more than
two endorsements are received from the same mentor, the
first two will be only considered.

More details and Application Form: https://iith.

ac.in/news/2024/01/31/IITH-IPDF-2024/ OR IIT
Hyderabad
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Details of Workshops/Conferences Abroad

Name: Geometry, Statistical Mechanics, And Integrability
Date: March 11, 2024–June 14, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA.
Visit: www.ipam.ucla.edu/programs/long-programs/geometry-statistical-mechanics-and-integrability/

Name: AIM Workshop: Degree D Points On Algebraic Surfaces
Date: March 18, 2024–March 22, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA.
Visit: aimath.org/workshops/upcoming/degreedsurface/

Name: Analysis On Fractals And Networks, And Applications
Date: March 18, 2024–March 22, 2024
Venue: CIRM, 163 Avenue De Luminy, Case 916 13288 Marseille Cedex 9, FRANCE.
Visit: conferences.cirm-math.fr/2950.html

Name: Multi-Scale Methods For Reactive Flow And Transport In Complex Elastic Media, Conference In Memory Of Prof. Andro Mikelic
Date: March 19, 2024–March 22, 2024
Venue: CAAC, Center For Advanced Academic Studies, Dubrovnik, Croatia.
Visit: web.math.pmf.unizg.hr/andromikelic/

Name: Workshop I: Statistical Mechanics And Discrete Geometry
Date: March 25, 2024–March 29, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA.
Visit: www.ipam.ucla.edu/programs/workshops/workshop-i-statistical-mechanics-and-discrete-geometry/

Name: Modern Aspects Of Harmonic Analysis On Lie Groups
Date: April 2, 2024–April 5, 2024
Venue: Georg-August-University GÖTtingen, GÖTtingen, Lower-Saxony/Germany.
Visit: jaeh.cc/SS2024/index.htm

Name: Recent Developments In Noncommutative Algebraic Geometry
Date: April 8, 2024–April 12, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA.
Visit: www.msri.org/workshops/1075

Name: Workshop II: Integrability And Algebraic Combinatorics
Date: April 15, 2024–April 19, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA.
Visit: www.ipam.ucla.edu/programs/workshops/workshop-ii-integrability-and-algebraic-combinatorics/

Name: Recent Developments In Commutative Algebra
Date: April 15, 2024–April 19, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA.
Visit: www.msri.org/workshops/1060

Name: AIM Workshop: Higher-Dimensional Contact Topology
Date: April 15, 2024–April 19, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA.
Visit: aimath.org/workshops/upcoming/highdimcontacttop/
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Name: CRM Thematic Semester On “Geometric Analysis”
Date: April 15, 2024–April 29, 2024
Venue: Centre De Recherches Mathématiques, Université De Montréal, Québec, Canada.
Visit: www.crmath.ca/en/activities/{#}/type/activity/id/3880

Name: SIAM Conference On Data Mining (SDM24)
Date: April 18, 2024–April 20, 2024
Venue: Westin Houston, Memorial City, Houston, Texas, USA.
Visit: www.siam.org/conferences/cm/conference/sdm24

Name: International Summit On Materials Science
Date: April 19, 2024–April 20, 2024
Venue: Tokyo, Japan.
Visit: materialsscience.averconferences.com/

Name: AIM Workshop: Post-Quantum Group-Based Cryptography
Date: April 29, 2024–May3, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA.
Visit: aimath.org/workshops/upcoming/postquantgroup/

Name: Advances In Lie Theory, Representation Theory And Combinatorics: Inspired By The Work Of Georgia M. Benkart
Date: May 1, 2024–May 3, 2024
Venue: SL Math 17 Gauss Way, Berkeley, CA 94720, USA.
Visit: www.msri.org/workshops/1065/

Name: Workshop III: Statistical Mechanics Beyond 2D
Date: May 6, 2024–May 10, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA.
Visit: www.ipam.ucla.edu/programs/workshops/workshop-iii-statistical-mechanics-beyond-2d/

Name: AIM Workshop: High-Dimensional Phenomena In Discrete Analysis
Date: May 13, 2024–May 17, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA.
Visit: aimath.org/workshops/upcoming/highdimdiscrete/

Name: SIAM Conference On Applied Linear Algebra (LA24)
Date: May 13, 2024–May 17, 2024
Venue: Sorbonne Universite, Paris, France.
Visit: www.siam.org/conferences/cm/conference/la24

Name: SIAM Conference On Mathematical Aspects Of Material Science (MS24)
Date: May 19, 2024–May 23, 2024
Venue: Sheraton Pittsburgh Station Square, Pittsburgh, Pennsylvania, USA.
Visit: www.siam.org/conferences/cm/conference/ms24

Name: Workshop IV: Vertex Models: Algebraic And Probabilistic Aspects Of Universality
Date: May 20, 2024–May 24, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA.
Visit: www.ipam.ucla.edu/programs/workshops/workshop-iv-vertex-models-algebrai c-and-probabilistic-aspects-

of-universality/

Name: XXII GEOMETRICAL SEMINAR
Date: May 26, 2024–May 31, 2024
Venue: Vrnjaéka Banja, Serbia.
Visit: tesla.pmf.ni.ac.rs/people/geometrijskiseminarxxii/
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Name: Representation Theory And Related Geometry: Progress And Prospects (On The Occasion Of Daniel K. Nakano’s 60th Birthday)
Date: May 27, 2024–May 31, 2024
Venue: University Of Georgia, Athens, GA, USA.
Visit: sites.google.com/view/representation-theory-geometry

Name: SIAM Conference On Imaging Science (IS24)
Date: May 28, 2024–May 31, 2024
Venue: Westin Peachtree Plaza, Atlanta, Georgia, USA.
Visit: www.siam.org/conferences/cm/conference/is24

Name: Computational Aspects Of Thin Groups
Date: June 3, 2024–June 14, 2024
Venue: IMS, National University Of Singapore.
Visit: ims.nus.edu.sg/events/computational-aspects-of-thin-groups/

Name: Séminaire De MathématiquesSupérieures 2024: “Flows And Variational Methods InRiemannian And Complex Geometry: Classical
And Modern Methods (Montréal, Canada)”
Date: June 3, 2024–June 14, 2024
Venue: Montréal, Canada.
Visit: www.slmath.org/summer-schools/1061

Name: BIOMATH 2024: International Conference On Mathematical Methods And Models In Biosciences
Date: June 16, 2024–June 22, 2024
Venue: Cutty Sark Resort, Scottburgh, South Africa.
Visit: biomath.bg/2024

Name: Open Communications In Nonlinear Mathematical Physics - 2024
Date: June 23, 2024–June 29, 2024
Venue: Häcker’s Grand Hotel, Bad Ems, Rhineland-Palatinate, Germany.
Visit: euler-ocnmp.de/

Name: New Perspectives In Computational Group Theory
Date: June 24, 2024–June 26, 2024
Venue: University Of Warwick, UK.
Visit: sites.google.com/view/newperspectivescgt/home

Name: SIAM Conference On Nonlinear Waves And Coherent Structures (NWCS24)
Date: June 24, 2024–June 27, 2024
Venue: Lord Baltimore Hotel, Baltimore, MD, USA.
Visit: www.siam.org/conferences/cm/conference/nwcs24

Name: ICERM Workshop: Queer In Computational And Applied Mathematics
Date: June 24, 2024–June 28, 2024
Venue: ICERM (Providence, Rhode Island), USA.

Visit: icerm.brown.edu/topical_workshops/tw-24-qcam/

The Mathematics Newsletter may be downloaded from the RMS website at

www.ramanujanmathsociety.org
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Mathematics Newsletter is a quarterly journal published in March, June, September and
December of  each year. The first issue of  any new volume is published in June.

Mathematics Newsletter welcomes from its readers

 Expository articles in mathematics typed in LaTeX or Microsoft Word;

 Information on forthcoming meetings, seminars, workshops and
conferences in mathematics and reports on those which were recently
concluded;

 Mathematical puzzles and problems addressed to the readership of the
Newsletter ;

 Solutions to mathematical problems that have appeared in the Newsletter and
comments on the solutions;

 Brief reports on the mathematical activities at their departments that might
be of  interest to the readership of  the Newsletter;

 Information about faculty positions and scholarships;

 Abstracts (each not exceeding one page) of  recent Ph.D. theses;

 Descriptions of recently-published books written by them; and

 Any other items that might be of  interest to the mathematical community.

Readers are requested not to submit regular research articles for publication in the
Mathematics Newsletter. The Newsletter is not the forum for such articles. Instead, the
Newsletter looks for expository articles that are consciously written in a style that
would make them accessible to a broad mathematical readership.

- Chief Editor, Mathematics Newsletter
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