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Abstract. Let X be the space ⇠ [0, 1] or !1 [0, 1] with norm k · k1 and let Y be the space !1 [0, 1] or ⇠ [0, 1] with norm
k · k1. By a simple procedure, we obtain linear isometries from the space Y to the dual of X . We also show that !1 [0, 1] is
linearly isometric with the hyperspace �⇠0 [0, 1] := {G 2 �⇠ [0, 1], G(0) = 0} of the space �⇠ [0, 1], the space of all absolutely
continuous functions with total variation as the norm.
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1. Introduction

Let X be the space ⇠ [0, 1] or !1 [0, 1] with norm k · k1
and let Y be the space !1 [0, 1] or ⇠ [0, 1] with norm k · k1.
The scalar field for all spaces under consideration is K, the
field R or C. From basic functional analysis (see, e.g., [1],[2]),
we may recall the following:

• ⇠ [0, 1] is the vector space of all continuous K-valued
functions on [0, 1], and k · k1 and k · k1 are norms on
⇠ [0, 1] defined by

kGk1 =
π

1

0

|G(C) |3C, kGk1 = max
0C1

|G(C) |,

respectively, for G 2 ⇠ [0, 1]. With respect to the norm
k · k1, ⇠ [0, 1] is a Banach space.

• !
1 [0, 1] is the vector space of all Lebesgue integrable
K-valued functions on [0, 1] with equality of two elements
in it understood in the sense of equal almost everywhere,
and !1 [0, 1] is a Banach space with respect to the norm

kGk1 =
π

1

0

|G(C) |3C, G 2 !1 [0, 1],

where the integration is with respect to the Lebesgue
measure on [0, 1].

• ⇠ [0, 1] is a dense subspace of !1 [0, 1].
• !

1 [0, 1] is the vector space of all K-valued measurable
functions on [0, 1] which are essentially bounded, in the
sense that, a measurable function G : [0, 1] ! K belongs

to !1 [0, 1] if and only if there exists "G > 0 such |G(C) | 
"G for almost all (a.a.) C 2 [0, 1]. It is a Banach space with
respect to the norm

kGk1 := inf{"G : |G(C) |  "G for a.a. C 2 [0, 1]},

which is called the essential bound of G.
• ⇠ [0, 1] is a closed proper subspace of !1 [0, 1].
• The space of all continuous linear functionals on a normed

linear space - , called dual of - and denoted by -
0, is a

Banach space with respect to the norm

k 5 k := sup{| 5 (G) | : G 2 - , kGk  1}, 5 2 - 0
.

For H 2 Y , let 5H : X ! K be defined by

5H (G) =
π

1

0

G(C)H(C) 3C, G 2 X , (1.1)

where the integration is with respect to the Lebesgue measure
on [0, 1]. Then we see that 5H is a linear functional on X and

| 5H (G) |  kHk1kGk1 8 G 2 X .

Thus, for every H 2 Y , 5H is continuous so that it belongs to
X

0
, the dual of X , and

k 5H k  kHk1 8 H 2 Y (1.2)
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so that the map ) : Y ! X
0 defined by

)H = 5H , H 2 Y , (1.3)

is a bounded linear operator.
In the next section, we show that ) is a linear isometry,

that is, k 5H k = kHk1 for all H 2 Y , under various choices of
X and Y . We also show that !1 [0, 1] is linearly isometric
with the hyperspace �⇠0 [0, 1] := {G 2 �⇠ [0, 1], G(0) = 0}
of the space �⇠ [0, 1], the space of all absolutely continuous
functions with total variation as the norm.

2. Main Results

Let H 2 Y and let Y > 0 be given. Then we observe that
π

1

0

( |H(C) � Y)3C 
π

1

0

|H(C) |2
|H(C) | + Y 3C

=
π

1

0

H(C)
|H(C) | + Y H(C)3C

=
π

1

0

GY (C)H(C) 3C,

where

GY (C) =
H(C)

|H(C) | + Y .

Note that

(1) H 2 !1 [0, 1] implies GY 2 !1 [0, 1],
(2) H 2 ⇠ [0, 1] implies GY 2 ⇠ [0, 1] ✓ !

1 [0, 1]

with kGY k1  1. Thus, for the following choices

(1) X = !1 [0, 1] and Y = !1 [0, 1] ,
(2) X = ⇠ [0, 1] with k · k1 and Y = ⇠ [0, 1] with k · k1,
(3) X = !1 [0, 1] and Y = ⇠ [0, 1] with k · k1,

we haveπ
1

0

( |H(C) � Y)3C 
π

1

0

GY (C)H(C) 3C = 5H (GY)

for H 2 Y and Y > 0. Consequently, for the above choices of
the ordered pair (X ,Y), we have

kHk1  k 5H k.

Thus, in view of (1.2), we have proved the following theorem.

Theorem 2.1. Let the ordered pair (X ,Y) be as in any of the
following three choices:

(1) X = !1 [0, 1] and Y = !1 [0, 1] ,
(2) X = ⇠ [0, 1] with k · k1 and Y = ⇠ [0, 1] with k · k1,
(3) X = !1 [0, 1] and Y = ⇠ [0, 1] with k · k1.

Then the map ) : Y ! X
0 defined by (1.3) is a linear

isometry.

Remark 2.2. It is a well-known result that the map ) :
!

1 [0, 1] ! (!1 [0, 1])0 defined by (1.3) is a linear isometry
(see e.g. [1],[2]). We provided above a new proof for this
result which helped us unifying this result with other choices
of ordered pair (X ,Y) as in (2) in the above theorem. It is
also to be mentioned here that Theorem 2.1 can be easily
extended to the case wherein the interval [0, 1] is replaced by
the closure of any open bounded subset of R3 for any 3 2 N.

From Theorem 2.1, we derive the following.

Theorem 2.3. Let X = (⇠ [0, 1], k · k1) and Y = !
1 [0, 1].

Then the map ) : Y ! X
0 defined by (1.3) is a linear

isometry.

Proof. By Theorem 2.1, the map H 7! 5H from (⇠ [0, 1],
k · k1) to (⇠ [0, 1], k · k1)0 is a linear isometry. Now,
the conclusion in the theorem follows using the fact that
(⇠ [0, 1], k · k1) is dense in !1 [0, 1].

For the next result, let us consider the space

�⇠0 [0, 1] := {G 2 �⇠ [0, 1], G(0) = 0}

with total variation as the norm, where �⇠ [0, 1] is the space
of all absolutely continuous functions on [0, 1]. On �⇠0 [0, 1]
we consider the norm as the total variation, and show that
the map H 7! 5H is a linear isometry from !

1 [0, 1] onto
�⇠0 [0, 1]. Before this, let us define certain notions involved
in the above.

A function i : [0, 1] ! K is said to be absolutely
continuous if for every Y > 0, there exists X > 0 such
that for every disjoint family of intervals (B8 , C8) ✓ [0, 1],
8 = 1, . . . , =,

=’
8=1

(C8 � B8) < X =)
=’
8=1

|i(C8) � i(B8) | < Y.

It is known that every absolutely continuous function is
of bounded variation (cf. [3]). We may recall that (cf.
[1],[2],[3]) a function i : [0, 1] ! K is said to be of bounded
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variation if its total variation + (i) is finite, where

+ (i) := sup
P

:’
8=1

|i(C8) � i(C8�1) | < 1,

where the supremum is taken over all partitions P : 0 := C0 <

C1 < · · · < C: of [0, 1]. It is also known that

kik⌫+ := |i(0) | ++ (i)

is a norm on ⌫+ [0, 1], the vector space of all functions of
bounded variation.

By fundamental theorem of Lebesgue integration (cf. [3]),
if H 2 !1 [0, 1], then the function EH : [0, 1] ! K defined by

EH (C) =
π

C

0

H(B) 3B, C 2 [0, 1], (2.1)

belongs to �⇠0 [0, 1], EH di↵erentiable almost everywhere
and E0

H
= H a.e., and conversely, if E 2 �⇠0 [0, 1] then it is

di↵erentiable a.e., E0 2 !1 [0, 1] and

E(C) =
π

C

0

E
0 (B) 3B, C 2 [0, 1] .

Now, let H 2 !
1 [0, 1] and EH be as in (2.1). Then we

have EH 2 �⇠0 [0, 1]. In particular, EH 2 ⌫+ [0, 1] with norm
kEH k⌫+ = + (EH). In fact,

kEH k⌫+  kHk1.

To see this, consider a partition P : 0 = C0 < C1 < · · · < C: = 1
of [0, 1]. Then we have

:’
8=1

|EH (C8) � EH (C8�1) | =
:’
8=1

����
π

C8

C8�1

H(B)3B
����


:’
8=1

π
C8

C8�1

|H(B) |3B

=
π

1

0

|H(B) |3B = kHk1.

Hence, kEH k⌫+ = + (H)  kHk1.

Theorem 2.4. Let H 2 !
1 [0, 1] and EH : [0, 1] ! K be

defined by

EH (C) =
π

C

0

H(B) 3B, C 2 [0, 1] .

Then EH 2 �⇠0 [0, 1] and the map H 7! EH is a linear
isometry from !

1 [0, 1] onto �⇠0 [0, 1] with the norm k · k⌫+
on �⇠0 [0, 1].

Proof. Let H 2 !1 [0, 1]. We have seen that EH 2 �⇠0 [0, 1]
and kEH k⌫+  kHk1. Also, by fundamental theorem of
Lebesgue integration, the map H 7! EH from !

1 [0, 1] to
�⇠0 [0, 1] is onto. Hence, it is enough to show that kHk1 
kEH k⌫+ .

By Theorem 2.3, we know that

kHk1 = k 5H k,

where 5H 2 (⇠ [0, 1], k · k1)0 defined by (1.1), that is,

5H (G) =
π

1

0

G(C)H(C) 3C, G 2 ⇠ [0, 1] .

Since H = E0
H

a.e., we have

π
1

0

G(C)H(C) 3C =
π

1

0

G(C)E0
H
(C) 3C =

π
1

0

G(C)3EH (C) 3C,

where the last integral is in the sense of Riemann-Stiltjes.
Hence,

| 5H (G) |  kGk1kEH k⌫+ 8 G 2 ⇠ [0, 1] .

Hence, k 5H k  kEH k⌫+ so that we have

kHk1 = k 5H k  kEH k⌫+ .

This completes the proof.
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Abstract. Fatou-Biberbach domains in C: , : � 2 are proper subdomains of C: , : � 2 that are biholomorphic to C: , : � 2.
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a Fatou-Bieberbach domain.
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1. Introduction

The goal of this paper is to provide a brief survey on
Fatou-Bieberbach domains in C: , : � 2.

Definition. A proper subdomain ⌦ of C: , : � 2 is said
to a Fatou-Bieberbach domain (or F.B. domain), if it is
biholomorphic to C: .

In particular, there exist holomorphic injective maps q :
C
: ! C

: , which are not onto. The domain q(C:) ( C: ,
gives a Fatou-Bieberbach domain. It may be noted that as a
consequence of the Picard’s theorem, which states that image
of an entire function q : C! C is either whole C or C minus
a point, such domains do not exist in C.

The goal of this write-up is to discuss Fatou-Bieberbach
domains and their pathologies from the context of
geometry, function theory and dynamics. The existence of
Fatou-Bieberbach domain was confirmed/predicted by the
French mathematician Fatou in 1922 in [9] and later an
explicit construction was given by Bieberbach in 1930 in [8],
using a method that dates back to Poincaré (around 1890).
Bieberbach’s method involved the following three basic steps

• Constructing a sequence of automorphism {q=} of C: ,
: � 2 such that Jacobian of q= ⌘ 1 for every = � 1.

• The limit of q= exists over all compact subsets  of C:

such that the Jacobian of the limit map q is also 1.

• The limit map q : C: ! C
: is injective by construction,

but the range of q is not dense in C: . Hence ⌦ = q(C:) is
a Fatou-Bieberbach domain.

Apparently one might feel that Fatou-Bieberbach domains
are large, in particular their measure is infinite. But
Fatou-Bieberbach domains with pathological properties, i.e.,
both small and big Fatou-Bieberbach domains have been
constructed by various authors. A few important constructions
and an open question on Fatou-Bieberbach domains are
enlisted as follows

(a) Small F.B. domains: (Rosay-Rudin [18]) There exist a
sequence of F.B. domains (say ⌦=) in C: , : � 2 such
that

⌦= \⌦< = ;,< < = and
1ÿ
==1

⌦= < C: .

(b) Large F.B. domains: (Wold [20]) For a given
(polynomially) convex compact set  ⇢ C: (: � 2) and
a countable dense subset ⇢ of C: \  , there exist a F.B.
domain avoiding  but containing ⇢ .

(c) F.B. domains with chaotic boundary: (Peters-Wold
[17]) There exist F.B. domain in C2, with boundary
having Hausdor↵ dimension 4.

(d) F.B. domains with smooth boundary: (Stensønes [19])
There exist F.B. domains in C: , : � 2, with smooth
boundary.
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(e) Open Question: Is there an F.B. domain with real
analytic boundary, i.e., whether the boundary of the
Fatou-Bieberbach domain is realised as a zero set of a
(locally) real-analytic function or not?

A general method to construct Fatou-Bieberbach domains was
developed by Rosay-Rudin in 1989 (see [18]), obtained as
a consequence of dynamical properties of automorphisms of
C
: , : � 2. Their result is stated as

Theorem (Rosay-Rudin, 1989). If � 2 Aut(C:) with an
attracting fixed point at ? 2 C: then the basin of attraction of
� at ?, i.e.,

⌦�
?

:= {I 2 C: : �= (I) =

=-timesz                  }|                  {
� � � � � � · · · � � (I) ! ?

as =! 1} ' C: .

Example. As a consequence of the above theorem one
obtains that if � is a Hénon map of the form

� (G, H) = (H, 0G + H2), 0 < |0 | < 1
2
,

then ⌦�(0,0) ' C2. But now it is easy to check that the point
(0, 3) 8 ⌦�(0,0) , hence ⌦�(0,0) is an F.B. domain.

In Section 2, we discuss the connection of
Fatou-Bieberbach domains to function theory in several
variables. In this context we will emphasize another class of
domains called the Short C2’s. The construction of Short C2’s
was given by Fornæss in [10], and the method is similar to
Rosay-Rudin’s construction of F.B. domains in spirit. Thus
in this context, we also note a dictionary of pathological
Short C:’s, at par with F.B. domains.

In Section 3, we discuss a long-standing open problem
in holomorphic dynamics, raised by Bedford in 2000,
on uniformisation of stable manifolds. Due to certain
equivalent formulations this question has a deep connection
to Fatou-Bieberbach domains. In particular, it boils down to
a question generalising Rosay-Rudin’s formula on existence
of Fatou-Bieberbach domains (see [12]). In the rest of this
section we will briefly discuss the main ideas of our work [7],
which gives an a�rmative answer to Bedford’s question.

2. Fatou-Bieberbach domains and the
union problem

As mentioned in the introduction, here we discuss the
importance of Fatou-Bieberbach domains from the point of
view of function theory, in particular in the context of the
classical Levi problem. For this we first recall a definition:
A domain ⌦ 2 C: is said to be a domain of holomorphy
if it admits a holomorphic function that does not extend
analytically beyond any boundary point of the domain ⌦.

Theorem 2.1 (E.E. Levi, 1910, [14]). Every (smooth)
domain of holomorphy is a pseudoconvex domain, i.e., ⌦

admits a continuous plurisubharmonic exhaustion function.

Further he raised the converse question (in [14]), which is
known in the literature as the

Problem (Levi Problem). Whether every pseudoconvex
domain in C: , : � 2, is a domain of holomorphy?

The Levi problem was solved a�rmatively first by
Oka ([16]) and then by Hörmander ([13]) in 1930’s.
But an important contribution in the study of Levi
Problem — in particular a result that helped in removing the
assumption of smooth boundary conditions from the Levi
Problem — is

Theorem (Behnke-Stein, 1938, [3]). Increasing or ascen-
ding union of domain of holomorphy is also a domain of
holomorphy.

Note here that F.B. domains are also obtained as limits
of increasing union of balls, and biholomorphic images of
balls are domains of holomorphy. Thus as a consequence of
the Behnke-Stein theorem, an F.B. domain is a domain of
holomorphy or equivalently, due to the Levi problem, is also
a pseudoconvex domain. This resulted in posing the natural
question, popularly termed as the union problem.

Problem (Union Problem for balls). Is it possible to
classify domains that are obtained as increasing or ascending
limits of domains biholomorphic to the balls in C: , : � 2?

A concrete answer was given to the union problem in C2 by
Fornæss and Sibony in 1981 ([11]) stated as
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Theorem 2.2. Let ⌦ be a subdomain of C2 obtained as
increasing union of biholomorphic images of the ball such
that the infinitesimal Kobayashi metric does not vanish
identically. Then ⌦ is biholomorphic to the unit ball in C2 or
D ⇥ C.

To mention here, we say that the infinitesimal Kobayashi
metric on a domain ⌦ ⇢ C: vanishes identically if for every
point ? 2 ⌦ and any non-zero vector b 2 C: (however
arbitrarily large in magnitude) there exists a holomorphic
function d?,b : D! ⌦ such that

d?,b (0) = ? and ⇡d?,b (0) = b .

Geometrically the above signifies that it can fit in arbitrarily
large discs as image of holomorphic functions at every point ?
in the domain ⌦. Further the above property is invariant under
biholomorphisms.

Now note that it is easy to observe that in the whole of
C
: the Kobayashi metric vanishes identically—consider the

function

d?,b (I) = ? + Ib for every ? 2 C: , I 2 D.

Thus the Kobayashi metric vanishes identically on
Fatou-Bieberbach domains as well. Thus it poses the
following question

Problem. What is the analogue of Fornæss-Sibony’s result
when the Kobayashi metric vanishes identically on the
domain ⌦.

In this context, there exists the class of domains,
called Short C:’s—obtained by a similar (non-autonomous)
dynamical process as Rosay-Rudin’s by Fornæss in 2004
(see [10]).

Theorem 2.3 (Fornæss, 2004). Let �= (I,F) = (0=F + I2
,

0=I) where 0 < |0=+1 | < |0= |2 and 0 < |01 | < 1. Then the
basin of attraction of �=’s at the origin, i.e.,

⌦�= := {I 2 C2 : � (=) (I) = �= � �=�1 � · · · � �1(I) ! 0

as =! 1}

is not a Fatou–Bieberbach domain. The properties of ⌦�= are
as follows

(i) ⌦�= can be written as increasing union of domains,
biholomorphic to the unit ball.

(ii) The infinitesimal Kobayashi metric vanishes identically
on ⌦�= .

(iii) ⌦�= admits a non–constant bounded plurisubharmonic
function.

Here we mention the following result (see [6] for details),
which essentially nullifies the hope of a concrete classification
result for the union problem (for balls) with identically
vanishing infinitesimal Kobayashi metric in the limit domain.
It is stated as

Theorem (Bera-Pal-Verma, 2018). There exists a con-
tinuum of biholomorphic non-equivalent Short C2’s.

As mentioned before note that the existence of short C:’s is
motivated from the existence of Fatou-Bieberbach domains
by Rosay-Rudin. Hence it is natural to ask—whether we have
pathological examples of short C:’s as well. So we mention
the following series of results and an open problem, obtained
keeping in mind the analogue dictionary for F.B. domains.

(a) (Bera, 2018, [4]) There exists a disjoint union of
collection of short C2’s in C2.

(b) (Bera, 2018, [4]) Given a polynomially convex set  
there exists a short C2 which is dense in the complement
of  .

(c) (Fornaess, 2004, [10]) There exists a short C2 that
properly contains an F.B. domain and has smooth
boundary.

(d) (Bera, 2018, [4]) For every B 2 [3, 4] there exists a short
C

2 with a boundary having Hausdor↵ dimension B.
(e) Open question: Is there a short C2 with real analytic

boundary?

3. Fatou-Bieberbach domains and the
stable manifolds

In this section, we discuss the natural connection between
Fatou-Bieberbach domains and the stable manifolds. It is
known that Rosay-Rudin’s result on attracting basins can
be equivalently stated in the context of (attracting) stable
manifolds as

Theorem (Sternberg). Let (" , d) be a complex manifold
with a Riemannian metric d. If � is an automorphism of "
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with a hyperbolic fixed point, i.e., the eigenvalues of � lie
in the complement of the unit circle. Then what happens?
Incomplete statement. Further, if the stable dimension at ? is
: � 1, then the stable set/manifold of � at ?, defined as

,
�

B
(?) := {I 2 " : �= (I) =

=-timesz                  }|                  {
� � � � � � · · · � � (I) ! ?

as =! 1}

is biholomorphic to C: .

As a generalisation to the above setup, Bedford raised the
following problem in 2000 at [2].

Problem (Bedford, 2000). Let (" , d) be a complex
manifold with a Riemannian metric d. If � is an
automorphism of " such that the action of � is uniformly
hyperbolic on compact invariant set  with stable dimension
: � 1 for every point ? 2  , i.e., •⇢�

B
(?) = : for every

? 2  , whether for every ? 2  the stable set/manifold of �
at ?,

,
�

B
(?) := {I 2 " : �= (I) =

=-timesz                  }|                  {
� � � � � � · · · � � (I) ! �

= (?)

as =! 1}

is biholomorphic toC:? In particular, is every stable manifold
corresponding to a hyperbolic action uniformized by C:?

The above problem was realized as the following conjecture
in the context of Fatou-Bieberbach domains (or in the
context of a generalisation to Rosay-Rudin’s result) by
Fornæss-Stensønes in 2004 (see [12]). The same is also
popularized as Bedford’s conjecture and is stated as

Conjecture. (Fornæss-Stensønes, 2004 or Bedford’s
Conjecture). Suppose {�=} is a sequence of automorphisms
of C: with attracting fixed point at the origin and there exist
0 < � < ⌫ < 1, such that

�kIk  k�= (I)k  ⌫kIk for every I 2 ⌫(0; A).

Then the non-autonomous basin of attraction of the
sequence {�=} at the origin, defined as

⌦{�= }
0 := {I 2 C: : � (=) (I) = �= � �=�1 � · · · � �1(I) ! 0

as =! 1} ' C: .

The above, i.e., both Bedford’s problem and conjecture were
open for some time since 2000, with partial answers obtained
by various authors. To mention them briefly, in the context
of Bedford’s open problem an almost a�rmative answer was
obtained in [15].

Theorem 3.1 (Jonsson-Varolin, 2002). There exists a
probability measure ` on the hyperbolic set  —where  is as
in the statement of (Bedford’s) problem—such that for almost
every point ? in the set  , the stable manifold through ? is
biholomorphic to C: .

Later an a�rmative answer to Bedford’s conjecture—as
stated by Fornæss-Stensønes—in the case ⌫

2
< � was

obtained in [17]. It is stated as

Theorem 3.2 (Peters-Wold, 2007). Suppose {�=} is a
sequence of automorphism of C: with attracting fixed point
at the origin and there exist 0 < � < ⌫ < 1 and ⌫2

< � such
that

�kIk  k�= (I)k  ⌫kIk for every I 2 ⌫(0; A). (3.1)

Then the non-autonomous basin of attraction of the sequence
{�=} at the origin, defined as

⌦{�= }
0 := {I 2 C: : � (=) (I) = �= � �=�1 � · · · � �1(I) ! 0

as =! 1} ' C: .

There were further improvements to the above result by
various authors, with additional assumption on the behaviour
of the sequence of functions, however the statement in its full
generality was open, until 2022. In [7], we give an a�rmative
answer to Bedford’s conjecture, thus also answering
a�rmatively Bedford’s (open) problem on uniformisation
of stable manifolds. To state the theorem we first note the
following definitio: A sequence of automorphisms {�=} of C:

is said to be uniformly attracting at the origin if it satisfies
the above condition (3.1) on a uniform neighbourhood of the
origin.

Theorem 3.3 (Bera-Verma, 2022). Suppose {�=} 2
Aut(C:) is uniformly attracting at the origin. Then the
non-autonomous basin of attraction of the sequence {�=} at
the origin, i.e., ⌦{�= }

0 is biholomorphic to C: .

The proof in C3 and higher dimensions involves a careful
study of the potential theoretic properties of a family of

Mathematics Newsletter -7- Vol. 34 #1 & 2, June – September 2023



(weak) shift-like maps. The method indeed involves a few
technical steps. To continue our discussion here we will
briefly discuss the motivation and the idea of the proof of the
above theorem in C2. We first observe that given a uniformly
attracting non-autonomous sequence {�=} such that ⌫:0

<

� < ⌫, by simultaneously triangularizaing the linear part of
each {�=} we may assume

�= (G, H) = (0=G, 1=H + 2=G) + higher order terms

As a Step 1 we first prove the following result in C2.

Theorem 3.4 (Bera-Verma, 2022). There exist sequences
of polynomials {?=} and {@=} of degree :0 in one variable
with

?= (0) = @= (0) = ?0= (0) = 0 and @0
=
(0) = 1=

for every = � 1 such that the basin of attraction ⌦{6= }
0 of the

sequence of endomorphisms

6= (G, H) =
⇣
0=G + ?= (H + 2�1

=
@= (G)), 2=H + @= (G)

⌘
(3.2)

is biholomorphic to ⌦{�= }
0 .

The above result relies on the idea of non-autonomous
conjugation of sequences of functions and follows from
an important result of Abate-Abbondandolo-Majer (2015),
obtained in [1]. Note that the sequence {6=} thus obtained is
a uniformly attracting sequence of Hénon maps with degree
at most :0 � 2. A further analysis of the sequence of Hénon
maps obtained above gives that they satisfy the uniform
filtration and uniform bound property. To state the property
precisely—for ' > 0, consider the filtration of C2 given by

+' = {|G |, |H | < '},++
'
= {|H | � max{|G |, '}},

+
�
'
= {|G | � max{|H |, '}}.

A sequence of generalized Hénon maps {H=}, (that is, H= is a
finite composition of maps of form

H(G, H) = (H, XG + %(H)) (3.3)

where X < 0 and % is a polynomial in one variable of degree
at least 2), is said to satisfy the uniform filtration and bound
condition if:

(i) {H=} admits a uniform filtration radius '{H= } > 1
(su�ciently large) such that for every ' > '{H= }

(a) H= (++
'
) ⇢ ++

'
and H

�1
=
(+�
'
) ⇢ +�

'
,

(b) there exists a sequence of positive real numbers
{'=} diverging to infinity, with '0 = ', satisfying
+'= \ H(=) (++

'
) = ; and +'= \ H(=)�1(+�

'
) = ;,

(c) there exist uniform positive constants 0 < < < 1 <

" such that

< |H |3= < kH= (G, H)k

= |c2 � H= (G, H) | < " |H |3= on ++
'

and

< |G |3= <

��H�1
=
(G, H)

��
= |c1 � H

�1
=
(G, H) | < " |G |3= on +�

'
.

where 3= is the degree of H=.

(ii) For every ' � '{H= } , there exists a uniform constant
⌫' = max{kH= (I)k : I 2 +'} < 1.

Thus the proof follows from the following Step 2 which is a
Corollary obtained in [5].

Corollary 3.5 (Bera, 2022). Let {⌘=} be a sequence of
Hénon maps which satisfy the uniform filtration and bound
condition and is uniformly attracting on a neighbourhood of
origin, i.e., satisfying (3.1). Then the basin of attraction of the
sequence {⌘=} at the origin is biholomorphic to C2.

This completes the discussion of the proof in C2.
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1. Plane quasiconformal mappings

Let  be a number with 1   < +1 and set : = ( �1)/( +
1) 2 [0, 1). An orientation preserving homeomorphism 5

of a domain ⇡ in the Riemann sphere bC = C [ {1}
onto another domain ⇡

0 in bC is called a  -quasiconformal
mapping if 5 has a locally square integrable derivative (in the
sense of distributions) on ⇡\{1, 5

�1(1)} which satisfy the
inequality

| 5Ī |  : | 5I |

almost everywhere on ⇡ . Here,

5I =
1
2
�
5G � 8 5H

�
and 5Ī =

1
2
�
5G + 8 5H

�
.

Note that 5 is also called :-quasiconformal and in the large
part of the present exposition, we indeed use this terminology.
If we do not specify the constant  , the map is simply
called quasiconformal. In the above definition, if we replace
“orientation preserving homeomorphism” by “continuous
map”, then the function 5 is called  -quasiregular. In that
case, we do not specify the range and say that 5 : ⇡ ! bC
is ( -)quasiregular. Note that quasiconformal mappings are
quasiregular. A more detailed account is given in [Sug18].
Quasiconformal mappings enjoy the following properties.

Theorem 1.6. Let ⇡,⇡0
,⇡

00 be subdomains of bC. Then the
following hold.

(1) If 5 : ⇡ ! ⇡
0 is a  1-quasiconformal mapping and

if 6 : ⇡
0 ! ⇡

00 is a  2-quasiconformal mapping,
then the composite mapping 6 � 5 : ⇡ ! ⇡

00 is
 1 2-quasiconformal.

(2) If 5 : ⇡ ! ⇡
0 is a  -quasiconformal mapping,

then the inverse mapping 5
�1 : ⇡

0 ! ⇡ is also
 -quasiconformal.

(3) If 5 : ⇡ ! ⇡
0 is a 1-quasiconformal mapping, then 5 is

conformal; in other words, 5 is biholomorphic.
(4) If 5 : ⇡ ! ⇡

0 is non-constant quasiregular, then 5I < 0
almost everywhere in ⇡ .

The last property together with property (3) implies that for
a quasiconformal mapping 5 , 5 (⇢) is of area zero if and only
if so is ⇢ for a Borel subset ⇢ of ⇡ . It also enables us to define
the Borel measurable function

` 5 =
5Ī

5I

for a quasiregular mapping 5 : ⇡ ! bC. The measurable
function ` 5 is called the Beltrami coe�cient of 5 . The
quantity

 ( 5 ) =
1 + k` 5 k1
1 � k` 5 k1

is called the maximal dilatation of 5 , where k` 5 k1 denotes
the essential sup-norm of ` 5 . Note that 5 is  -quasiregular
if and only if  ( 5 )   . In particular, ` 5 = 0 on a
subdomain ⇡0 of ⇡ precisely when 5 is holomorphic on ⇡0.

The Beltrami coe�cients obey the following transformation
rule. For a quasiconformal mapping 5 and a quasiregular
mapping 6, the formula

(`
6� 5 �1 � 5 ) 5I

5I

=
`6 � ` 5

1 � ` 5 · `6
holds almost everywhere as long as 6 � 5 is defined.

In particular, we obtain the following result, which is
noteworthy in applications of quasiconformal mappings.

Lemma 1.7. Let 5 : ⇡ ! ⇡
0 be a quasiconformal mapping

and 6 : ⇡ ! bC be a quasiregular mapping with ` 5 = `6

almost everywhere on ⇡ . Then ⌘ = 6 � 5
�1 : ⇡0 ! bC is

holomorphic.

The most fundamental result in the theory of plane
quasiconformal mapping is the following theorem due to
Ahlfors and Bers [AB].

Theorem 1.8 (Measurable Riemann Mapping Theorem).
Let ` be an essentially bounded measurable function on C
with k`k1 < 1. Then there exists a unique quasiconformal
mapping 5 = 5

` : C ! C such that 5 (0) = 0, 5 (1) = 1 and
` 5 = ` almost everywhere on C. Moreover, if ` = `C depends
holomorphically on a complex parameter C, then 5

`C (I) is
holomorphic in C.

Interested readers are encouraged to consult standard
textbooks [Ahl,LV] on quasiconformal mappings.

Corollary 1.9 (Stoïlow factorization). Let 6 be a
quasiregular map on a domain ⇡ ⇢ bC. Then there is a
quasiconformal mapping 5 : ⇡ ! ⇡

0 and a holomorphic
map ⌘ : ⇡0 ! bC such that 6 = ⌘ � 5 .

Proof. Indeed, define ` to be the Beltrami coe�cient `6 on
⇡ and ` = 0 o↵ the domain ⇡ . Then ⌘ = 6 � ( 5 `)�1 is
holomorphic on ⇡0 = 5

` (⇡) by Lemma 1.7. Thus 5 = 5
` |⇡

and ⌘ work.
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When dealing with quasiconformal mappings, the
following property is very useful. For the proof, we refer to
[LV, II §5].

Theorem 1.10. (1) The class of  -quasiconformal
mappings 5 : C! C with 5 (0) = 0, 5 (1) = 1 is normal
in the sense that each sequence in this class contains a
subsequence converging locally uniformly on C.

(2) Let 5= (= = 1, 2, 3, . . . ) be a sequence of
 -quasiconformal mappings on a domain ⇡ which
converges to a mapping 5 locally uniformly on ⇡ . Then
5 is either a  -quasiconformal mapping on ⇡ or a
constant mapping.

One may think that the notion of quasiconformal mappings
is somewhat artificial. However, it arises quite naturally in the
context of complex analysis. As evidence, we introduce to the
notion of holomorphic motions.

Let - be a domain in C= (or more generally, a complex
manifold) with basepoint _0 and let ⇢ be a subset of bC.
A mapping � : - ⇥ ⇢ ! bC is called a holomorphic motion
of ⇢ over - if the following three properties are satisfied:

(i) � (_0, I) = I for all I 2 ⇢ .
(ii) For each I 2 ⇢ , the mapping _ 7! � (_, I) is

holomorphic on - .
(iii) For each _ 2 - , the mapping I 7! � (_, I) = �_(I) is

injective on ⇢ .

Note that we do not assume joint continuity of the map
� (_, I). Nevertheless, the following strong conclusion can be
deduced. Here and in what follows, the unit disk {I 2 C :
|I | < 1} is denoted by D.

Theorem 1.11 (Mañé-Sad-Sullivan [MSS]). Let � : D⇥⇢
be a holomorphic motion of ⇢ over the unit disk D. Then �
extends uniquely to a holomorphic motion of the closure ⇢̄ of
⇢ over D in such a way that � : D ⇥ ⇢̄ ! bC is continuous.
Moreover, for each _ 2 D, the mapping �_(I) = � (_, I)
is |_ |-quasiconformal on each connected component of the
interior of ⇢̄ .

The above theorem is often called the _-lemma. As
a corollary, we have the following characterization of
quasiconformal mappings on the complex plane.

Theorem 1.12. Let 0 < : < 1. A mapping 5 : C ! C

fixing 0 and 1 is :-quasiconformal if and only if there is a

holomorphic motion � of C over D such that 5 (I) = � (: , I)
for I 2 C.

The “if” part follows from the Mañé-Sad-Sullivan theorem.
On the other hand, if 5 is :-quasiconformal, then we consider
the map � : D ⇥ C ! C defined by � (_, I) = 5

_` (I),
where ` = ` 5 /: and 5

_` is constructed by the Measurable
Riemann Mapping Theorem. Then � is a holomorphic motion
of C over D by the Ahlfors-Bers theorem and 5 = �: by
construction.

Finally, we mention the miraculas result proved by
Slodkowski [Slo].

Theorem 1.13. Any holomorphic motion � of a subset ⇢ ofbC over D extends to a holomorphic motion �̃ of bC over D;
that is, �̃ |⇢⇥D = �.

Note that the extension �̃ is not necessarily unique. More
refined results can be found in [EKK].

2. Various classes of domains

In Geometric Function Theory, it is important to study specific
classes of simply connected domains and their Riemann
mapping functions. Here, we recall the Riemann Mapping
Theorem.

Theorem 2.1 (Riemann Mapping Theorem). Let ⇡ be a
simply connected proper subdomain of C. For any given point
F0 2 ⇡, there exists a unique conformal homeomorphism 6

of ⇡ onto the unit disk D such that 6(F0) = 0 and that 60 (F0)
is a positive real number.

In our context, it is important to look at the inverse map
5 = 6

�1 : D ! ⇡ with 5 (0) = F0 and 5
0 (0) > 0. We call

5 the Riemann mapping function of ⇡ (with basepoint F0).
Note that, in the literature, 6 is often called the Riemann
mapping function. By taking the translation F ! F � F0,

we may assume F0 = 0 and, indeed, we will do it in what
follows. By taking a dilation F ! F/ 5 0 (0), we may further
normalize so that 5 (0) = 0 and 5

0 (0) = 1 but for a while we
will not do that.

Typical and important domains are summarized here. Let
⇡ be a domain in C with 0 2 ⇡ . Below, _ and U are given real
numbers with �c/2 < _ < c/2 and 0  U < 1.
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(I) ⇡ is called starlike (with respect to 0) if the line segment
[0, I1] is contained in ⇡ whenever I1 2 ⇡ .

(II) ⇡ is called convex if the line segment [I0, I1] is
contained in ⇡ whenever I0, I1 2 ⇡ .

(III) ⇡ is called close-to-convex or linearly accessible if the
complement C\⇡ is a union of half-lines which do not
intersect except for their tips.

(IV) ⇡ is called _-spirallike (with respect to 0) if the _-spiral
segment [0, I1]_ is contained in ⇡ whenever I1 2 ⇡ .

Here, [0, I1]_ = {I1 exp(C48_) : C 2 [�1, 0]}.
(V) ⇡ is called strongly starlike of order U (with respect

to 0) if I1 · *U ⇢ ⇡ for all I1 2 ⇡ . Here *U =

{exp(C48a) : a 2 (�c(1 � U)/2, c(1 � U)/2), C 2
[�1, 0]}.

(VI) ⇡ is called strongly _-spirallike of order U (with respect
to 0) if I1 · *_,U ⇢ ⇡ for all I1 2 ⇡ . Here *_,U =

{exp(C48a) : a 2 (_ � c(1 � U)/2, _ + c(1 � U)/2), C 2
[�1, 0]}.

Obviously, convex domains are starlike and starlike
domains are close-to-convex. We also remark that 0-spirallike
domains are nothing but starlike domains. Likewise, strongly
_-spirallikeness reduces to strong starlikeness when _ = 0.

In GFT, it is an important issue to characterize geometric
properties of domains in terms of their Riemann mapping
functions. We have the following results for the above classes
of domains.

Theorem 2.2. Let 5 : D ! C be a holomorphic function
with 5 (0) = 0 and 5

0 (0) > 0. Set ⇡ = 5 (D) and suppose
numbers _ 2 (�c/2, c/2) and U 2 [0, 1) are given.

(I) 5 is univalent and ⇡ is starlike if and only if

Re
✓
I 5

0 (I)
5 (I)

◆
> 0 on D.

(II) 5 is univalent and ⇡ is convex if and only if

Re
✓
1 + I 5

00 (I)
5
0 (I)

◆
> 0 on D.

(III) 5 is univalent and ⇡ is close-to-convex if and only if

Re
✓
4
�8a I 5

0 (I)
6(I)

◆
> 0 on D for a a 2 (�c/2, c, 2) and a

function 6 satisfying the condition (I) above.
(IV) 5 is univalent and ⇡ is _-spirallke if and only if

Re
✓
4
�8_ I 5

0 (I)
5 (I)

◆
> 0 on D.

(V) 5 is univalent and ⇡ is strongly starlike of order U if and

only if
���� arg

I 5
0 (I)
5 (I)

����  cU

2
on D.

(VI) 5 is univalent and ⇡ is strongly _-spirallike of order U if

and only if
���� arg

I 5
0 (I)
5 (I) � _

����  cU

2
on D.

We call the function appearing in one of the above list of
conditions by the name of the domain. For instance, we call 5
in condition (I) a starlike function.

It is remarkable that the above analytic conditions even
imply univalence of the functions 5 (I). For (I)–(IV), see
[Dur]. See [Sug05] and [Sug12] for (V) and (VI) respectively.

3. Quasidisks and quasiconformal extension

In the context of quasiconformal mappings, the most
important class of simply connected domains is that of
quasidisks. Here, a domain ⇡ in bC is called a quasidisk if
⇡ = 5 (D) for a quasiconformal mapping 5 : bC ! bC.
More specifically, ⇡ is called a  -quasidisk if we can take
a  -quasiconformal 5 . Note that a quasidisk is a Jordan
domain. But the converse is not true. The boundary of a
 -quasidisk is called a  -quasicircle.

Here is a strong connection between quasidisks and
quasiconformal extension of Riemann mapping functions.

Theorem 3.1. Let ⇡ be a simply connected domain in bC with
non-degenerate boundary. A conformal homeomorphism 5 :
D ! ⇡ extends to a quasiconformal mapping of bC if and
only if ⇡ is a quasidisk.

Also, the notion of quasiconformal reflection is important.
Here, an orientation-reversing homeomorphism ⌘ : bC ! bC
is called a  -quasiconfromal reflection in a Jordan curve �
if I 7! ⌘( Ī) is a  -quasiconformal mapping and if ⌘ is
an involution (namely, ⌘ � ⌘ =id) fixing � pointwise. The
following is also due to Ahlfors (see [Ahl]).

Theorem 3.2. A Jordan curve � in bC is a quasicircle if and
only if there is a quasiconformal reflection in � .

Kühnau refined this to the assertion (see [GeHa, p. 21]): �
is a  -quasicircle if and only if it admits a  -quasiconformal
reflection in � .

It is, in general, a hard problem to find the least  for a
given domain to be a  -quasidisk. For instance, it is known
(see [GeHa, p. 12]) that the sector ((U) = {I : | arg I | < U/2}
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is a  U-quasidisk and  U is sharp for 0 < U < 2c, where

 U = max

(r
2c � U
U

,

r
U

2c � U

)
.

There are metric characterizations of quasidisks. The
following one is found in [Ahl].

Theorem 3.3 (Ahlfors three-point property). A Jordan
curve ⇠ in bC passing through 1 is a quasicircle if and only if
there is a constant � � 1 such that the inequality

|I1 � I⇤ |
|I1 � I2 |

 �

holds for any points I1, I
⇤
, I2 on ⇠ situated in this order.

The above condition means that the diameter of the subarc
of ⇠ joining I1 and I2 in C is bounded by a constant multiple
of |I1 � I2 |. For a Jordan curve which does not pass through
1, the so-called “bounded turning” condition is useful. See
[GeHa, p. 23] for instance.

Theorem 3.4. A Jordan curve ⇠ in C is a quasicircle if and
only if there is a constant � � 1 such that the inequality
min{diam⇠1, diam⇠2}  �|I1 � I2 | holds for each pair of
distinct points I1, I2 in ⇠, where ⇠1 and ⇠2 are the connected
components of ⇠\{I1, I2}.

Note that bounded starlike domains are not necessarily
quasidisks (indeed, some of them are not Jordan domains).

The following characterization is due to Gehring [Geh]. We
use here the symbols D(0, A) = {I 2 C : |I � 0 | < A} and
D(0, A) = {I 2 C : |I � 0 |  A}.

Theorem 3.5. Let ⇡ be a simply connected domain in C.
Then ⇡ is a quasidisk if and only if the following two
conditions are satisfied:

(i) There exists a constant 0 > 1 such that for all I0 2 C and
A > 0 any two points in ⇡ \D(I0, A) can be joined by an
arc in ⇡ \ D(I0, 0A).

(ii) There exists a constant 0 < 1 < 1 such that for all I0 2 C
and A > 0 any two points in ⇡\D(I0, A) can be joined by
an arc in ⇡\D(I0, 1A).

After the work of Gehring, this sort of notions has been
intensively studied and extended to more general domains.
For instance, the above two conditions are studied separately.
Domains with Property (i) are called linearly connected

and (bounded) domains with Property (ii) are called John
domains. It is known that bounded linearly connected
domains are Jordan domains. See [Pom92] for details.

There are many other characterizations of quasidisks.
See the monograph [GeHa] by Gehring and Hag for more
information.

It is an important and interesting problem to give a
su�cient condition for a simply connected domain to be
a quasidisk. Equivalently, we want to have a su�cient
condition for a univalent function on the unit disk to have a
quasiconformal extension to the whole sphere bC. Here are a
couple of results in this line.

Theorem 3.6. A strongly _-spirallike function of order U

extends to a sin(cU/2)-quasiconformal mapping of C.

The case when _ = 0 (namely, the strongly starlike case)
was proved by Fait, Krzyż and Zygmunt [FKZ]. The general
case was shown by Sevodin [Sev] (see also [Sug12]).

We outline the proof in the case when _ = 0. Let ⇡ be a
domain containing 0 and define the function

'⇡ (\) = sup{A > 0 : [0, A48 \ ] ⇢ ⇡}

for \ 2 R. The following result gives another characterization
of strongly starlike domains (see [Sug05]).

Theorem 3.7. A domain ⇡ with 0 2 ⇡ is strongly starlike of
order U if and only if '⇡ is absolutely continuous on [0, 2c]
and it satisfies the inequality

|'0
⇡
(\) |

'⇡ (\)
 tan

cU

2
for almost every \.

In particular, a strongly starlike domain ⇡ is a bounded
Jordan domain because the mapping 48 \ 7! '⇡ (\)48 \ gives
an injective parametrization of the boundary of ⇡ .

For instance, we see that the rectangle |G | < 0, |H | < 1

with 0 � 1 is strongly starlike of order (2/c) arctan(0/1). In
particular, the square max{|G |, |H |} < 0 is strongly starlike of
order 1/2.

By using the above theorem, we construct the
quasiconformal extension of a strongly starlike function 5

of order U as follows. Let ⇡ = 5 (D). We first note that the
function 5 extends to a homeomorphism 5 : D ! ⇡ . Then
we define a quasiconformal reflection in m⇡ by

⌘(A48 \ ) = '⇡ (\)2

A

4
8 \

.
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Note that ⌘ swaps 0 and 1. By Theorem 3.7, we can see that
⌘ is indeed a sin(cU/2)-quasiconformal reflection. Then we
can now give a sin(cU/2)-quasiconformal extension of 5 by

5̃ (I) =
8>><
>>:
5 (I) if |I |  1,

⌘( 5 (1/Ī)) if |I | > 1.

Similar and more general results are found in [KVW].

Theorem 3.8. Let ⇡ be a convex domain such that
D(0, A0) ⇢ ⇡ ⇢ D(0, A1) for some 0 2 C and 0 < A0 
A1 < +1. Then ⇡ is a strongly starlike domain of order
(2/c) arccos(A0/A1). In particular, ⇡ is a 1+:

1�: -quasidisk,
where : =

p
1 � (A0/A1)2

.

Proof. We may assume that 0 = 0. Let 5 : D ! ⇡

be a Riemann map with 5 (0) = 0, 5 0 (0) > 0. Keeping
Theorem 1.10 in mind, by the standard approximation 5A (I) =
5 (AI)/A for 0 < A < 1, we may assume that the boundary of
⇡ is smooth. (Note that 5 (D(0, A)) is convex for 0 < A < 1
by a theorem of Study, which also follows from the analytic
characterization of convex domains.) First we consider the
boundary point I = G0 = '⇡ (0) of ⇡ on the positive real
axis. Suppose that the tangent line at G0 of m⇡ has the form
G = G0 + <H for a constant < 2 R. Since the tangent line
does not intersect the inner circle |I | = A0 and G0  A1,

we have |< |  tan(arccos(A0/A1)) =: " . Therefore, |'⇡ (\)�
'⇡ (0) |  |< |'⇡ (0) |\ | + >(\) as \ ! 0. This, in turn,
implies that |'0

⇡
(0) |  |< |'⇡ (0)  "'⇡ (0). By rotating,

we obtain the inequality |'0
⇡
(\) |  "'⇡ (\) for any \ 2 R.

Theorem 3.7 now implies that ⇡ is strongly starlike of order
U = (2/c) arccos(A0/A1). We apply Theorem 3.6 with _ = 0
to obtain that ⇡ is a 1+:

1�: -quasidisk, where : = sin(cU/2) =p
1 � (A0/A1)2

.

This result is also found in [KVW]. Note that an unbounded
convex domain might not be a quasidisk. For instance, the
pararell strip | Im I | < 1 is not a quasidisk because it is not a
Jordan domain in bC.

In connection with univalence and quasiconformal
extension criteria, Schwarzian and pre-Shwarzian derivatives
are very important. For a non-constant meromorphic function
5 on a domain, we define

) 5 =
5
0

5
0 and ( 5 = ) 0

5
� 1

2
)

2
5
.

We now consider the hyperbolic norm of weight 9 for an
analytic function i on D by

kik 9 = sup
I2D

(1 � |I |2) 9 |i(I) |.

Then the following result is well known.

Theorem 3.9. (i) (Becker, Becker-Pommerenke) Let 5 be
a non-constant holomorphic function on D. If 5 is
univalent on D then k) 5 k1  6. On the other hand,
if k) 5 k1  1, then 5 is univalent on D. Moreover,
if k) 5 k1  : < 1, then 5 extends to a :-quasiconformal
mapping of C.

(ii) (Kraus, Nehari, Ahlfors-Weill) Let 5 be a non-constant
meromorphic function on D. If 5 is univalent on D then
k( 5 k2  6. On the other hand, if k( 5 k2  2, then 5 is
univalent on D. Moreover, if k( 5 k2  2: < 2, then 5

extends to a :-quasiconformal mapping of bC.
For more results in this line, the reader may refer to [Sug07]

and [Hot].

4. Coe�cient problems related to
quasiconformal extension

In Geometric Function Theory, it is important to consider
extremal problems. To clarify the range of considerations,
we need to set up suitable classes of functions. Concerning
the quasiconformal extension problem, we define classes as
follows. Let A denote the set of analytic functions 5 on D
normalized so that 5 (0) = 0 and 5

0 (0) = 1. Hence, a function
5 2 A can be expanded in the convergent power series

5 (I) = I+
1’
==2

0=I
= = I+02I

2+03I
3+· · · ( |I | < 1). (4.1)

We denote by S the subset of A consisting of univalent
(= injective) functions on D. The famous Bieberbach
conjecture (now known as the de Branges theorem) asserts
that |0= |  = for = = 2, 3, 4, . . . for 5 2 S and equality
holds for some = � 2 precisely when 5 is the Koebe function
 (I) = I/(1 � I)2 = I + 2I2 + 3I3 + · · · or its rotation
4
�8 \
 (48 \ I). We next consider two kinds of subclasses of

S for 0  : < 1 : Denote by S (:) (resp. S
⇤(:)) the

set of functions 5 2 S which extend to :-quasiconformal
mappings of bC (resp. C). 5 2 S

⇤(:) means that 5 extend to
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a :-quasiconformal mapping of bC which fixes 1. Therefore,
S
⇤(:) ⇢ S (:). For instance, we have the following result.

Proposition 4.1. Let 5 2 S and set 5A (I) = 5 (AI)/A for
0 < A < 1. Then 5A 2 S

⇤(A) \ S (A2).

To show that 5 2 S
⇤(A), we consider the map � :

D ⇥ D ! C defined by � (_, I) = 5 (_I)/_ for _ < 0 and
� (0, I) = I. Then � is a holomorphic motion of D over
D. Extend � to D [ {1} by setting � (_,1) = 1. We
now apply the Slodkowski theorem (Theorem 1.13) to obtain
a holomorphic motion �̃ of bC over D such that �̃ (_, I) =

� (_, I) for _ 2 D and I 2 D [ {1}. By Theorem 1.11, it
implies that 5A (I) = � (A, I) extends to the A-quasiconformal
mapping �̃ (A, I) of C. Hence, we conclude that 5A 2 S

⇤(A).
The proof of the assertion 5A 2 S (A2) is contained in
Example 2.1 in [Sug99].

We now consider the extremal problems on the coe�cient
0= = 0= ( 5 ) of 5 in (4.1). We suggest the reader to consult the
survey paper [Hot] for more details. Let

�(=, :) = sup
5 2S (: )

|0= ( 5 ) | and �
⇤(=, :) = sup

5 2S⇤ (: )
|0= ( 5 ) |

for = � 2 and 0  : < 1. Since S
⇤(:) ⇢ S (:), we have

�
⇤(=, :)  �(=, :). By the above proposition and the de

Branges theorem, we also have

lim
:!1�

�
⇤(=, :) = lim

:!1�
�(=, :) = =.

We observe that �(=, :) and �⇤(=, :) are both non-decreasing
in 0  : < 1. Note that the classes S (:) and S

⇤(:) are
both compact so that the suprema can be replaced by maxima
in the above. On the other hand, the Möbius map ) (I) =

I/(1� I) = I+ I2 + I3 + · · · has natural conformal extension tobC and therefore ) 2 ((0). Hence �(=, :) � 1 for 0  : < 1
and = � 2. Determination of these quantities is largely open
except for = = 2.

Theorem 4.2.

�(2, :) = 2 � 4
✓

arccos :
c

◆2

and �
⇤(2, :) = 2: .

The first equality is due to Schi↵er and Schober [SS]. The
second equality is due to Kühnau [Küh69] and the extremal
function is given by

�(I) = I

(1 � :I)2 =  : (I) =
1’
==1

:
=�1

=I
=

,

where  (I) = I/(1 � I)2 is the Koebe function. Indeed, this
function has a :-quasiconformal extension to C of the form

�̃(I) = I

(1 � :I/|I |)2 ( |I | > 1).

One may expect extremal functions for �⇤(=, :) may be the
above � or its power transform

�<(I) = � (I<)1/< =
I

(1 � :I<)2/< = I+ 2:
<

I
<+1+$ (I2<+1)

for some integer < > 1. Taking < = = � 1, we have the first
estimate of the following result.

Theorem 4.3. For = � 2 and 0  : < 1,

2:
= � 1

 �
⇤(=, :)  :=. (4.2)

We show now the inequality �
⇤(=, :)  :=. Let 5 2

S
⇤(:) for some 0 < : < 1. By definition, there is

a :-quasiconformal mapping 5̃ of C onto itself such that
5̃ |D = 5 . Put ` = `

5̃
/: and consider the normalized

quasiconformal mapping 5
_` in Theorem 1.8 for _ 2 D.

Since it is conformal on D, we can expand it in the form

5
_` (I) =

1’
==1

2= (_)I=.

Note that each 2= (_) is a holomorphic function in |_ | < 1.
Then the function

�_(I) = 5
_` (I)/21(_) = I +

1’
==2

0= (_)I=

belongs to S . Now the de Branges theorem yields the
estimate |0= (_) |  = for _ 2 D. Since �0 = id, we have
0= (0) = 0. Hence Schwarz’s lemma implies that |0= (_) | 
|_ |=. In particular, we have |0= | = |0= (:) |  := as required.

Krushkal [Kru] claimed that equality holds in the first
inequality in (4.2) for su�ciently small : . However, the
following recent result revealed that the claim is false at least
when = = 3.

Theorem 4.4 (Gumenyuk and Hotta [GuHo]).

: (1 + 41�1/: (1 + :)) < �
⇤(3, :)

 min
0U1

h
(1 + 24�2U/(1�U) ): + 4U:2

i
.

As a counterpart of the class S , the class ⌃ has been studied
for a long time. Here, ⌃ denotes the set of univalent analytic

Mathematics Newsletter -15- Vol. 34 #1 & 2, June – September 2023



functions � (I) on |I | > 1 which have the Laurent series
expansion of the form

� (I) = I +
1’
==0

1=I
�= = I + 10 +

11

I

+ 12

I
2 + · · · ( |I | > 1).

We know sharp inequalities |11 |  1, |12 |  2/3 and
|13 |  4�6 + 1/2. See for instance [Dur]. However, up to now,
sharp bounds are not known for 1=, = � 4. Correspondingly
to S (:) and S

⇤(:), we consider the following subclasses
of ⌃. Denote by ⌃(:) (resp. ⌃⇤(:)) the set of functions
� 2 ⌃ which extend to :-quasiconformal mappings of bC
(resp. bC\{0}).

Note that for 5 2 S (:), the function � (I) = 1/ 5 (1/I)
belongs to ⌃(:). However, for � 2 ⌃(:) the function 5 (I) =
1/� (1/I) does not necessarily belong to S (:) because 5 may
have a pole inD. If � (I) < 0 for |I | > 1, then this 5 belongs to
S (:). On the other hand, when � (I) = 1/ 5 (1/I), 5 2 S

⇤(:)
if and only if � 2 ⌃⇤(:). We further define

⌫(=, :) = sup
�2⌃ (: )

|1= (�) | and ⌫
⇤(=, :) = sup

5 2⌃⇤ (: )
|1= (�) |

for = � 0 and 0  : < 1. Since ⌃⇤(:) ⇢ ⌃(:), we have
⌫
⇤(=, :)  ⌫(=, :). By the Lehto theorem [Leh] we have

1’
==1

=|1= |2  :
2

for � 2 ⌃(:). Therefore, we have the crude estimate

⌫
⇤(=, :)  ⌫(=, :)  :p

=

for = � 1. Kühnau [Küh69] showed that ⌫⇤(0, :) = 2:
and that ⌫⇤(1, :) = ⌫(1, :) = : . Indeed, extremal functions
are given by 1/�(1/I) and 1/�2(1/I), respectively. On the
other hand, the constant term may be arbitrary for functions
in ⌃(:), we have no bound for ⌫(0, :). It is a challenging
problem to determine, or estimate, the quantities ⌫(=, :) and
⌫
⇤(=, :) for even small =.

5. Grunsky coe�cients

Let � (Z) = Z + 10 + 11Z
�1 + · · · be a holomorphic function

on |Z | > ' for some ' � 1. Then we look at the form

� (Z) � � (l)
Z � l = 1 +

1’
==1

1=

Z
�= � l�=

Z � l .

Since
Z
�1 � l�1

Z � l = � 1
Zl

,

we compute

� (Z) � � (l)
Z � l = 1�

1’
==1

1=

�
Z
�=
l

�1+Z1�=
l

�2+· · ·+Z�1
l

�=�
.

Thus we can expand in the form

log
� (Z) � � (l)

Z � l = �
1’
<=1

1’
==1

V<,=

Z
<
l
=

in |Z | > ', |l| > '. The coe�cients V<,= are called the
Grunsky coe�cients of � . Note that V<,= = V=,<. We write

� (Z) = Z +
1’
==0

1=Z
�= = Z + 10 + ⌧ (Z).

Then ⌧ (Z) ! 0 as Z ! 1. Therefore,

log
� (Z) � � (l)

Z � l = log
✓
1 + ⌧ (Z) � ⌧ (l)

Z � l

◆
= �

1’
<=1

1’
==1

V<,=

Z
<
l
=
.

Noting that for a fixed Z

log
✓
1 + ⌧ (Z) � ⌧ (l)

Z � l

◆
=
⌧ (Z) � ⌧ (l)

Z � l + >(l�1)

as l ! 1, we have

�⌧ (Z) = lim
l!1

l log
✓
1 + ⌧ (Z) � ⌧ (l)

Z � l

◆
= �

1’
<=1

V<,1

Z
<

.

Hence we now have

1< = V<,1, < � 1.

The following inequality had been a powerful tool to attack
the Bieberbach conjecture for a long time. For the proof, we
refer to [Pom74] or [Dur].

Theorem 5.5 (The strong Grunsky inequality). A func-
tion � (Z) as before is analytic and univalent on |Z | > 1 if and
only if the inequality

1’
<=1

<

�����
1’
==1

V<,=G=

�����
2


1’
==1

|G= |2
=

holds for every complex sequence {G=} as long as the
right-hand side is convergent.

Since 1< = V<,1 for � (Z) = Z + Õ1
<=0 1<Z

�< in ⌃,

by choosing G= = X1,=, we obtain the inequality
1’
<=1

< |1< |2  1,
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which is known as Gronwall’s area theorem. The strong
Grunsky inequality is known to be equivalent to the (original)
Grunsky inequality (see [Pom74])�����

1’
<=1

1’
==1

V<,=G<G=

����� 
1’
==1

|G= |2
=

.

By making a change of variables G</
p
< = I<, we have the

inequality �����
1’
<=1

1’
==1

p
<=V<,=I<I=

����� 
1’
==1

|I= |2.

In particular,

|V<,= | 
1p
<=

, <, = � 1.

The operator G [�] : ✓2 ! ✓
2 defined by the symmetric

matrix (p<=V<,=)<,= is called the Grunsky operator. The
above inequality means that kG [�]k

✓
2  1. The operator

norm ^(�) = kG [�]k
✓

2 is called the Grunsky constant. Thus
� is univalent on |Z | > 1 if and only if ^(�)  1. For
relationship with quasiconformal mappings, we can state the
following. See, for example, [Küh82] for details.

Theorem 5.6. If � 2 ⌃(:), then ^(�)  : . Conversely,
if ^(�) < 1, then � 2 ⌃(: 0) for some : 0 < 1.

In particular, for � 2 ⌃(:),

|V<,= | 
:p
<=

, <, = � 1.

It is a challenging problem to find the sharp bound for V<,=

among the class ⌃(:) (even for the case : = 1).
Now we turn to the class S and consider the similar

expansion

log
5 (I) � 5 (F)
I � F =

1’
<=0

1’
==0

W<,=I
<

F
=

, I,F 2 D,

for 5 2 S . The numbers W<,= are called the Grunsky
coe�cients of 5 . We note that W0,0 = 0 and, setting F = 0, we
get

log
5 (I)
I

=
1’
<=1

W<,0I
< =

1’
<=1

W<I
<

.

Here W< are called the logarithmic coe�cients of 5 which
played an important role in the proof of the Bieberbach
conjecture. We now set � (Z) = 1/ 5 (1/Z) and compute

log
� (Z) � � (l)

Z � l = log
5 (I) � 5 (F)
I � F � log

5 (I)
I

� log
5 (F)
F

with I = 1/Z and F = 1/l. Hence we have the relations
V<,= = �W<,= for <, = � 1 for the Grunsky coe�cients.
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1. Introduction

Quasiregular mappings in R= are generalization of the notion
of an analytic functions in the complex plane. The class
of injective quasiregular mappings is the same as the class
of sense-preserving quasiconformal mappings. The basic
�
?-theory of quasiconformal mappings in the space was

laid down in papers of Zinsmeister [12] and Astala and
Koskela [3]. While the �

?-theory of analytic functions is
quite rich, the powerful machinery of the plane is not available
in the space. Thus, the approach taken in [12] and [3] is to
rely on a combination of analytic and geometric aspects of
the theory of quasiconformal mappings and a number of tools
from the harmonic analysis. Our goal here is to give a brief
overview of this theory and point out towards its possible
extensions to quasiregular maps with bounded multiplicity or
some other additional property as well as to present some of
the most recent results in this area.

2. Preliminaries

We need to recall some notions and estimates which all can be
found in [4], [9] and [10]. We write ⌫(G, A) for the open ball
in R= of radius A and centered at G, and we abbreviate ⌫(0, A)
to ⌫(A) and ⌫(0, 1) to ⌫=. We denote the boundary of ⌫(G, A)
by (=�1(G, A), we write (=�1 = (=�1(0, 1), and we denote the
surface area of (=�1 by l=�1.

The modulus of a family � of paths in R= is by definition

" (�) = inf
π
R=
d
=

3G

where the infimum is taken over non-negative Borel functions
d on R= with

Ø
W

d 3B � 1 for each locally rectifiable W 2 �.

A path family is the family � of radial segments joining
(
=�1(0, A), 0 < A < 1, to a set ⇢ ⇢ (

=�1
. We have that

" (�) = f(⇢) (log(1/A))1�=
,

where f(⇢) is the surface area of ⇢ . As for upper bounds, we
always have

" (�)  l=�1

[log('/A)]=�1 ,

if each W 2 � joins (=�1(G, A) to (=�1(G, '), 0 < A < '.

A homeomorphism of a domain ⌦ in R= into R=

is  -quasiconformal if 5 belongs to the Sobolev class

,
1,=
loc (⌦;R=) and |⇡ 5 (G) |=   � 5 (G) for almost every G 2 ⌦.

It then follows [10] that " (�)/  " ( 5 �)   
=�1

" (�)
for all path families � ⇢ ⌦; here 5 � = { 5 � W : W 2 �}.

Consider a homeomorphism 5 : ⌦ ! ⌦0. Suppose that
G 2 ⌦, G < 1 and 5 (G) < 1. For each A > 0 such that
(
=�1(G, A) ⇢ ⌦ we set

! (G, 5 , A) = max
|H�G |=A

| 5 (H) � 5 (G) |,

; (G, 5 , A) = min
|H�G |=A

| 5 (H) � 5 (G) |. (1)

Definition 1. The linear dilatation of 5 at G is the number

� (G, 5 ) = lim sup
A!0

! (G, 5 , A)
; (G, 5 , A) .

If G = 1, 5 (G) < 1, we define � (G, 5 ) = � (0, 5 � D) where D
is the inversion D(G) = G

|G |2 . If 5 (G) = 1, we define � (G, 5 ) =
� (G, D � 5 ).

Example 1. The mapping 5 : B= ! B=, 5 (G) = |G |U�1
G has

� (0, 5 ) = 1.

This is true for all radial mappings.

If G denotes a generic point in ⌫=, and l in (=�1
, we define

5 (l) = lim
A!1

5 (Al)

whenever this limit exists.
For each l 2 (=�1 we let

�(l) = {G 2 ⌫= : |G � l|  3(1 � |G |)}

Mathematics Newsletter -19- Vol. 34 #1 & 2, June – September 2023



be the cone with vertex l. It is easy to see that ((G) =

{l 2 (=�1 : G 2 �(l)} : With

) (G) = {l 2 (=�1 | G 2 �(l)}

�(l) = {G 2 ⌫= | |G � l| 6 3(1 � |G |)}

((G) = (=�1 \ ⌫(G, 3(1 � |G |)),

we have the following,

l 2 ((G) , (l 2 (=�1 ^ |G � l| 6 3(1 � |G |))

, (l 2 (=�1 ^ l 2 ⌫= ^ |G � l| 6 3(1 � |G |))

, (l 2 (=�1 ^ l 2 �(l))

, l 2 �(l).

3. Quasiconformal mappings and Np-classes

We say that a quasiconformal mapping 5 of ⌫=, = � 2,
belongs to the class � ? if

k 5 k� ? = sup
0<A<1

✓π
(
=�1

| 5 (Al) |?3f
◆1/?

< 1.

According to the following theorem of Jerison and
Weitsman [6], each quasiconformal mapping 5 belongs to
some � ?-class.

Theorem 1 (Jerison-Weitsman). There exists a constant
?0 = ?0(=, ) > 0 so that every  -quasiconformal mapping
5 of ⌫= belongs to � ? whenever ? < ?0.

By the classical theorem of Prawitz [8], all conformal
mappings 5 of the unit disk belong to � ? for ? < 1/2, and
the Koebe mapping 5 (I) = I/(1 � I)2 shows that this bound
is sharp. The exponent ?0 obtained by Jerison and Weitsman
is not the best possible. Astala and Koskela give a new proof
for Theorem 1 that yields the sharp exponent in the plane. In
higher dimensions, their estimate is optimal for mappings into
a half space, but it is still open if the given bound is also best
possible in the general situation.

For each  � 1 and = � 2, let 0(=, ) be the infimum of
the numbers 0 such that

sup
|G |<1

(1 � |G |)0 | 5 (G) | < 1

for every  -quasiconformal mapping 5 of ⌫
=
. Then we

have:

Theorem 2. The best possible bound ?0(=, ) in Theorem 1
is

?0(=, ) = (= � 1)/0(=, ).

In particular, ?0(2, ) = 1/(2 ), and for = � 3

(= � 1)/(2 )1/(=�1)  ?0(=, )  (= � 1)/ 1/(=�1)
.

Moreover, for the subclass of 5 mapping into a half space,

?0(=, ) = (= � 1)/ 1/(=�1)
.

Recall that ` is a Carleson measure if

`(⌫= \ ⌫(l, d))  ⇠d=�1

for l 2 (=�1 and d > 0.

4. Zinsmeister’s theorem and its extensions

One of the cornerstones of the modern development of
�
?-spaces is the theorem of Hardy and Littlewood that

characterizes �
?-functions in terms of the nontangential

maximal function

5
⇤(l) = sup

G2� (l)
| 5 (G) |, l 2 (=�1

.
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According to this result a (holomorphic) function 5 of
the disk belongs to �

? if and only if 5
⇤ 2 !

? ((1).
In [12] Zinsmeister has extended this maximal function
characterization to quasiconformal mappings in the space as
follows.

Theorem 3 (Zinsmeister). The following conditions are
equivalent for each quasiconformal mapping 5 of ⌫=, = � 2,
and for all 0 < ? < 1.

1. 5 (l) 2 ! ? ((=�1).
2. 5 (G) 2 � ?

.

3. 5
⇤(l) 2 ! ? ((=�1).

In addition, the corresponding “norms” are equivalent with
constants depending only on =, , ?.

Here 5 (l) denotes the radial limit of 5 at l 2 (
=�1

whenever it exists. The original proof of Theorem 3 in [12]
was based on a result of Jones [7] on Carleson measures and
quasiconformal mappings. Astala and Koskela [3] provided
a di↵erent approach which is directly tied to the geometric
nature of quasiconformal mappings. Their approach is given
in the following Lemma and its Corollary whose proofs we
sketch here for reader’s convenience.

Lemma 1 (Astala-Koskela). Suppose 5 is quasiconformal
with 5 (G) < 0 for all G 2 ⌫=. Then, for each G 2 ⌫= and all
" > 1,

f({l 2 ((G) : | 5 (l) | < | 5 (G) |/"})

 ⇠ (=, )f(((G)) (log")1�=
. (2)

Proof. Let us first consider the case where in (2) we have
G = 0. We may assume that 3 ( 5 (0), 5 ((=�1)) = 1. After this
normalization it follows from a simple modulus estimate that
| 5 (G) � 5 (0) |  1/2 for |G |  A0; here A0 depends only on
=, . As

1 = 3 ( 5 (0), 5 ((=�1))  | 5 (0) |,

the set 5 ⌫(0, A0) cannot intersect ⌫(0, | 5 (0) |/2).
Let next ⇢ = {l 2 (

=�1 : | 5 (l) | < | 5 (0) |/"} and
choose �⇢ to be the path family of radial segments connecting
⌫(0, A0) to ⇢ . Then �⇢ has modulus

" (�⇢) = f(⇢) log(1/A0)1�=
.

If " > 3, the paths in the image family �0
⇢
= 5 �⇢ connect

the complement of ⌫(0, | 5 (0) |/2) to ⌫(0, | 5 (0) |/") and

therefore

" (�0
⇢
)  l=�1(log("/2))1�=  ⇠ (=) (log")1�=

.

As " (�⇢)   " (�0
⇢
), we obtain

f(⇢)  ⇠ (=, ) (log")1�=
.

Finally, for 1 < "  3, clearly f(⇢)  f((=�1) (log 3)=�1

(log")1�=
.

Let then G 2 ⌫= be general. The desired estimate follows by
mapping G to 0 by the Möbius transformation)G , and applying
the estimate from the first part of the proof to 6 = 5 � )�1

G
. ⇤

The inequality (2) implies that it is not possible for a set of
boundary points that go much closer to the origin than 5 (0)
to be of large measure. Namely, Lemma 1 says that a situation
illustrated by the figure below can’t occur.

Corrolary 1 (Astala-Koskela). If 5 is quasiconformal in
⌫
=
, then

| 5 (G) |@  ⇠ 1
f(((G))

π
( (G )

| 5 (l) |@3f (3)

for all G 2 ⌫= and each 0 < @ < 1. The constant ⇠ depends
only on =, , @.

Proof. Assume first that 5 (G) < 0 for all G 2 ⌫
=
. We apply

Lemma 1. If "0 is so large that ⇠ (=, ) (log"0)1�= = 1/2,
the estimate in Lemma 1 gives

2f({l 2 ((G) : | 5 (l) | � | 5 (G) |/"0}) � f(((G)).
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Consequently,
π
( (G )

| 5 (l) |@3f � | 5 (G) |@"�@
0 f

⇥ ({l 2 ((G) : | 5 (l) | � | 5 (G) |/"0})

= ⇠ (=, ) | 5 (G) |@f(((G)).

If 5 (G) = 0 for some G 2 ⌫=, we may choose a point H in the
complement of 5 (⌫=) so that |H |  | 5 (l) | for all l 2 (=�1

.

Applying the above estimate to 5 � H we get

⇠@ f(((G)) | | 5 (G) |@ � |H |@ | 6 f(((G)) | 5 (G) � H |@

6 ⇠
π
( (G )

| 5 (l) � H |@3f

6 ⇠
π
( (G )

| 5 (l) |@3f +
π
( (G )

|H |@3f
�
.

Now we have

⇠@ f(((G)) | 5 (G) |@

6 ⇠
π
( (G )

| 5 (l) |@3f + (⇠ + ⇠@)
π
( (G )

|H |@3f

6 ⇠
π
( (G )

| 5 (l) |@3f.

Zinsmeister’s theorem follows now immediately: First of
all notice that as | 5 (Al) |, | 5 (l) |  | 5 ⇤(l) |, the condition 3.
of Theorem 3 implies conditions 1. and 2. An easy exercise
to the reader is to use Fatou lemma and prove that the
condition 2. yields the condition 1. It remains to prove that the
condition 1. of Theorem 3 implies the condition 3.

So, assume the condition 1. By taking supremum when
G 2 �(l) in inequality (3) we obtain

5
⇤(l)@ 6 ⇠ · sup

G2� (l)

✓
1

f(((G))

π
( (G )

| 5 (l) |@3f
◆

6 ⇠ " ( | 5 |@ (l))

where " is Hardy-Littlewood maximal function on the sphere
(
=�1 :

" ( 5 ) (G) = sup
A>0

1
<(⌫(G, A))

π
⌫(G,A )

| 5 (H) | 3H.

Since " is a bounded operator on !
B ((=�1), for all

B = ?

@
> 1 we obtain for @ < ?,

π
(
=�1

5
⇤(l) ?3f =

π
(
=�1

( 5 ⇤(l)@) ?/@3f

6 ⇠
π
(
=�1

(" ( | 5 |@ (l))) ?/@3f

6 ⇠
π
(
=�1

( | 5 (l) |@) ?/@3f

= ⇠
π
(
=�1

| 5 (l) |?3f = k 5 k ?
!
? .

This finishes the proof that 5 (l) 2 !
? ((=�1) implies

5
⇤(l) 2 !

? ((=�1), i.e., that the condition 1. of Theorem 3
implies the condition 3.

5. Further generalizations

One of the possible extensions of Theorem 3 is in the case of
quasiregular maps with bounded multiplicity. More precisely,
we would like to pose the following problem whose solution
would require a deferent approach from that taken in [3].

Problem 1. Does Theorem 3 hold when quasiconformality is
replaced with quasiregularity with bounded multiplicity?

It turns out, however, that the proof from [3] for the case of
proper quasiregular maps can be fairly easily adjusted.

Recall that proper mappings are continuous mappings with
the property that inverse of a compact set is compact. For
discrete and open maps condition that 5 is proper is equivalent
to the condition that 5 is closed, as well as to the condition
that 5 is boundary preserving [11].

For example, proper analytic mappings of the unit disk
onto the unit disk are precisely finite Blaschke products, i.e.
mappings of the form

÷
=

|0= |
0=

0= � I
1 � 0̄=I

.

To modify the crucial steps of the proof from [3], first note
that for a proper quasiregular mapping 5 : ⌫

= �! R
= we

have that
5 ((=�1) = m 5 (⌫=) (4)

and that proper quasiregular mappings are necessarily of
bounded multiplicity.

Mathematics Newsletter -22- Vol. 34 #1 & 2, June – September 2023



For  -quasiregular map 5 : ⌦ �! ⌦0 of multiplicity
bounded by # , we have the modulus estimate similar to that
for  -quasiconformal maps, namely " (�⇢) 6  ·# ·" (�0

⇢
)

for all rings ⇢ such that ⇢ ⇢ ⌦.
Thus, the constants will now depend on dimension =,

multiplicity # and the quasiconformality constant  , but
otherwise the proof goes mostly unchanged.

However, there is one more key point where the condition
5 ((=�1) = m 5 (⌫=) is essential.

Namely, when proving Corollary 1 case 5 (G) = 0 for G 2
⌫
= and 5 is only #-quasiregular we may not be able to choose

a point H in the complement of 5 (⌫=) such that |H | 6 | 5 (l|
for alll 2 (=�1. But the condition (4) guaranties that 5 ((=�1)
is separated from 0 since the image of an internal point cannot
be on a boundary of image.

The condition (4) will allow us to proceed like in the case
of quasiconformal mappings:

min
H2m 5 (⌫= )

|H | = inf
l2(=�1

| 5 (l) |.

In [1] the program of extending Zinsmeister characterization
theorem has been completed for a special class of quasiregular
mappings in the plane. Every quasiregular mapping in the
plane can be represented as 5 = 6 � q, where q is
quasiconformal and 6 is analytic.

Jerison and Weitsman have given in [6] an example of an
analytic function 6 2 H

2 and quasiconformal q : D �! D

such that 5 = 6 � q 8 H
?

@A
for any ? > 0.

In [1] Adamowicz and González have considered the
composition operator ⇠q6 = 6 � q for 6 2 H

? and found
necessary and su�cient condition that guarantees that ⇠q
sends H? to H

?

@2
with bounded norm of ⇠q for 0 < ? < 1.

Namely, when q�1 |T is a Lipschitz function then ⇠q is a
bounded operator and the converse is also true, as they show
in the following theorem:

Theorem 4 (Adamowicz-González). Let q : D �! D be a
quasiconformal mapping and 0 < ? < 1. Then ⇠q : H? �!
H
?

@A
is a bounded operator if and only if q�1 |T is a Lipschitz

function.

The paper [1] has also introduced the following class of
quasiregular mappings:

F? := { 5 : D :�! R2; 5 = 6 � 5 for some 6 2 H
?

and q�1 |T is a Lipschitz function}.

While their result shows that F? ⇢ H
?

@A
, there are

mappings in H
?

@A
that are not in F?. For instance if 6 is

bounded regardless of what quasiconformal q : D �! D is
6�q is in H?

@2
. In [1], they give the following more interesting

example:

Theorem 5. There exists a function 5 = 6 � q 2 H
1
@A

such
that q�1 |T is a Lipschitz but 6 8 H

1. Moreover, such a
decomposition is unique in the sense that there are no 6̃ 2 H

1,
6̃ < 6 and quasiconformal q̃, q̃ < q with Lipschitz q̃�1 |T,
such that 5 = 6̃ � q̃.

In [1] Adamowicz and González have shown that for
 -quasiregular mappings from F? we have the following
analogue of Zinsmeister’s characterization theorem:

Theorem 6 (Adamowicz-González). Let 0 < ? < 1 and
5 be a  -quasiregular mapping in F?. Then we have the
following:

1. 5 2 H
?

@A
.

2. The non-tangential boundary values 5 (b) exists for a.e.
b 2 T and 5 (b) 2 ! ? (T).

3. The non-tangential maximal function 5
⇤ 2 !? ⇤ (T).

4. If 2 6 ? 6 2 
 �1 , then it holds that

Ø
D
|⇡ 5 (I) |?

(1 � |I |) ?�1
3< < 1.

It should be noted that Part 4 does not always hold when
0 < ? < 2 (see, for example, [4, Theorem 1]).

Zinsmeister’s theorem has also been extended to
quasiconformal maps in the Heinsenberg group H1. In the
paper [2], the authors consider maps from the unit ball with
the Korányi metric. Recall that the Korányi norm is given by

k (I, C)k = ( |I |4 + C2)1/4
, (I, C) 2 H1

where Heinserberg group in coordinates (I, C), I 2 C, C 2 R
with the group product represented as

(I1, C1) · (I2, C2) = (I1 + I2, C1 + C2 + 2�<(I1 Ī2)).

The Korányi distance is given by

3 (?, @) := k@�1 · ?k, ?, @ 2 H1
.

The paper [2] introduces the Hardy class H
? of maps of

unit ball ⌫ ⇢ H1 in Korányi metric and shows the following.

Theorem 7 (Adamowicz-Fässler). For every  > 1, there
exists a constant ?0 = ?0( ) > 0 such that every  -qc map
5 : ⌫ �! 5 (⌫) 2 H1, belongs to H

? for all 0 < ? < ?0.
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For the class H? which Adamowicz and Fässler introduce
in [2], they prove the following analogue of the Zinsmeister
and the Astala-Koskela theorem.

Theorem 8 (Adamowicz-Fässler). Let 0 < ? < 1. The
following conditions are equivalent for a quasiconformal map
5 : ⌫ �! 5 (⌫) 2 H1:

1. 5 2 H
?.

2. The non-tangential maximal function " 5 of 5 belongs
to ! ? (S3 |m⌫).

3. The Korányi norm of the radial limit 5 ⇤ of 5 belongs to
!
? (S3 |m⌫).

They apply Theorem 8 to characterize Carleson measures
on ⌫ in terms of radial limits of quasiconformal maps on ⌫.
More precisely, in [2], Adamowicz and Fässler prove the
following theorem.

Theorem 9 (Adamowicz-Fässler). Suppose that ` is a
Carleson measure on ⌫ and that 5 : ⌫ �! 5 (⌫) ⇢ H1 is a
 -quasiconformal mapping. Thenπ

⌫

k 5 (@)k ? 3`(@) 6 ⇠
π
m⌫

k 5 ⇤(l)k ? 3S3(l),

for all 0 < ? < 1, (5)

where ⇠ depends only on ?,  and the Carleson measure
constant of `. Conversely, for every  > 1 there exists
?( ) < 3 such that if ? > ?( ) is fixed and ` is a Borel
measure for which (5) holds for all  -qc mappings, then ` is
a Carleson measure.
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Visit: https://tinyurl.com/SSCA26ConfRegistrationhttps://drive.google.com/file/d/1O9CRTs30P4N2JM38Hufh2MEw3Vu-yEBh/
view?usp=sharing

Name: International Conference on Computations and Data Science.
Date: March 08, 2024–March 10, 2024
Venue: Department of Mathematics, IIT Roorkee.
Visit: https://www.iitr.ac.in/cods24/index.html?

Details of Workshop/Conferences Abroad
Name: Connections Workshop: Noncommutative Algebraic Geometry
Date: February 1, 2024–February 2, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1054

Name: Introductory Workshop: Noncommutative Algebraic Geometry
Date: February 5, 2024–February 9, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1055

Name: Mathematical Approaches For Connectome Analysis
Date: February 12, 2024–February 16, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/workshops/mathematical-approaches-for-connectome-analysis/

Name: SIAM Conference On Uncertainty Quantification (UQ24)
Date: February 27, 2024–March 1, 2024
Venue: To Be Determined, Trieste, Italy.
Visit: www.siam.org/conferences/cm/conference/uq24

Name: Asymptotics In Complex Geometry: A Conference In Memory Of Steve Zelditch
Date: March 7, 2024–March 10, 2024
Venue: Northwestern University, Evanston, IL, USA
Visit: sites.google.com/view/asymptotics/
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Name: Hot Topics: “Artin Groups And Arrangements: Topology, Geometry, And Combinatorics”
Date: March 11, 2024–March 15, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1047

Name: Geometry, Statistical Mechanics, And Integrability
Date: March 11, 2024–June 14, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/long-programs/geometry-statistical-mechanics-and-integrability/

Name: Spring School On Soliton Dynamics
Date: March 14, 2024–March 16, 2024
Venue: Texas A&M University, College Station, TX, USA.
Visit: sites.google.com/tamu.edu/solitons-spring-school

Name: 13th Ohio River Analysis Meeting (ORAM 13)
Date: March 16, 2024–March 17, 2024
Venue: University Of Kentucky, Lexington KY, USA
Visit: sites.google.com/view/oram-13/home

Name: AIM Workshop: Degree D Points On Algebraic Surfaces
Date: March 18, 2024–March 22, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA
Visit: aimath.org/workshops/upcoming/degreedsurface/

Name: Analysis On Fractals And Networks, And Applications
Date: March 18, 2024–March 22, 2024
Venue: CIRM, 163 Avenue De Luminy, Case 916 13288 Marseille Cedex 9, FRANCE.
Visit: conferences.cirm-math.fr/2950.html

Name: Multi-Scale Methods For Reactive Flow And Transport In Complex Elastic Media, Conference In Memory Of Prof. Andro Mikelic
Date: March 19, 2024–March 22, 2024
Venue: CAAC , Center For Advanced Academic Studies, Dubrovnik, Croatia.
Visit: web.math.pmf.unizg.hr/andromikelic/

Name: Workshop I: Statistical Mechanics And Discrete Geometry
Date: March 25, 2024–March 29, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/workshops/workshop-i-statistical-mechanics-and-discrete-geometry/

Name: Modern Aspects Of Harmonic Analysis On Lie Groups
Date: April 2, 2024–April 5, 2024
Venue: Georg-August-University GÖTtingen, GÖTtingen, Lower-Saxony/Germany.
Visit: jaeh.cc/SS2024/index.htm

Name: Recent Developments In Noncommutative Algebraic Geometry
Date: April 8, 2024–April 12, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1075

Name: Workshop II: Integrability And Algebraic Combinatorics
Date: April 15, 2024–April 19, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/workshops/workshop-ii-integrability-and-algebraic-combinatorics/

Name: Recent Developments In Commutative Algebra
Date: April 15, 2024–April 19, 2024
Venue: SLMath 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1060
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Name: AIM Workshop: Higher-Dimensional Contact Topology
Date: April 15, 2024–April 19, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA
Visit: aimath.org/workshops/upcoming/highdimcontacttop/

Name: CRM Thematic Semester On “Geometric Analysis”
Date: April 15, 2024–April 29, 2024
Venue: Centre De RecherchesMathématiques, Université De Montréal, Québec, Canada.
Visit: www.crmath.ca/en/activities/{#}/type/activity/id/3880

Name: SIAM Conference On Data Mining (SDM24)
Date: April 18, 2024–April 20, 2024
Venue: Westin Houston, Memorial City, Houston, Texas, USA
Visit: www.siam.org/conferences/cm/conference/sdm24

Name: International Summit On Materials Science
Date: April 19, 2024–April 20, 2024
Venue: Tokyo, Japan.
Visit: materialsscience.averconferences.com/

Name: AIM Workshop: Post-Quantum Group-Based Cryptography
Date: April 29, 2024–May 3, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA
Visit: aimath.org/workshops/upcoming/postquantgroup/

Name: Advances In Lie Theory, Representation Theory And Combinatorics: Inspired By The Work Of Georgia M. Benkart
Date: May 1, 2024–May 3, 2024
Venue: SL Math 17 Gauss Way, Berkeley, CA 94720, USA
Visit: www.msri.org/workshops/1065/

Name: Workshop III: Statistical Mechanics Beyond 2D
Date: May 6, 2024–May 10, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/workshops/workshop-iii-statistical-mechanics-beyond-2d/

Name: AIM Workshop: High-Dimensional Phenomena In Discrete Analysis
Date: May 13, 2024–May 17, 2024
Venue: American Institute Of Mathematics, Pasadena, California, USA
Visit: aimath.org/workshops/upcoming/highdimdiscrete/

Name: SIAM Conference On Applied Linear Algebra (LA24)
Date: May 13, 2024–May 17, 2024
Venue: Sorbonne Universite, Paris, France.
Visit: www.siam.org/conferences/cm/conference/la24

Name: SIAM Conference On Mathematical Aspects Of Material Science (MS24)
Date: May 19, 2024–May 23, 2024
Venue: Sheraton Pittsburgh Station Square, Pittsburgh, Pennsylvania, USA
Visit: www.siam.org/conferences/cm/conference/ms24

Name: Workshop IV: Vertex Models: Algebraic And Probabilistic Aspects Of Universality
Date: May 20, 2024–May 24, 2024
Venue: Institute For Pure And Applied Mathematics (IPAM), Los Angeles, CA, USA
Visit: www.ipam.ucla.edu/programs/workshops/workshop-iv-vertex-models-algebraic-and-probabilistic-aspects-of-
universality/

Name: XXII GEOMETRICAL SEMINAR
Date: May 26, 2024–May 31, 2024
Venue: Vrnjaéka Banja, Serbia.
Visit: tesla.pmf.ni.ac.rs/people/geometrijskiseminarxxii/
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Name: Representation Theory And Related Geometry: Progress And Prospects (On The Occasion Of Daniel K. Nakano’s 60th Birthday)
Date: May 27, 2024–May 31, 2024
Venue: University Of Georgia, Athens, GA, USA.
Visit: sites.google.com/view/representation-theory-geometry

Name: SIAM Conference On Imaging Science (IS24)
Date: May 28, 2024–May 31, 2024
Venue: Westin Peachtree Plaza, Atlanta, Georgia, USA
Visit: www.siam.org/conferences/cm/conference/is24

Name: Computational Aspects Of Thin Groups
Date: June 3, 2024–June 14, 2024
Venue: IMS, National University Of Singapore.
Visit: ims.nus.edu.sg/events/computational-aspects-of-thin-groups/

Name: Séminaire De MathématiquesSupérieures 2024: “Flows And Variational Methods InRiemannian And Complex Geometry: Classical And
Modern Methods (Montréal, Canada)”
Date: June 3, 2024–June 14, 2024
Venue: Montréal, Canada.
Visit: www.slmath.org/summer-schools/1061

Name: BIOMATH 2024: International Conference On Mathematical Methods And Models In Biosciences
Date: June 16, 2024–June 22, 2024
Venue: Cutty Sark Resort, Scottburgh, South Africa.
Visit: biomath.bg/2024

Name: Open Communications In Nonlinear Mathematical Physics - 2024
Date: June 23, 2024–June 29, 2024
Venue: Häcker’s Grand Hotel, Bad Ems, Rhineland-Palatinate, Germany.
Visit: euler-ocnmp.de/

Name: New Perspectives In Computational Group Theory
Date: June 24, 2024–June 26, 2024
Venue: University Of Warwick.
Visit: sites.google.com/view/newperspectivescgt/home

Name: SIAM Conference On Nonlinear Waves And Coherent Structures (NWCS24)
Date: June 24, 2024–June 27, 2024
Venue: Lord Baltimore Hotel, Baltimore, MD, USA
Visit: www.siam.org/conferences/cm/conference/nwcs24

Name: ICERM Workshop: Queer In Computational And Applied Mathematics
Date: June 24, 2024–June 28, 2024
Venue: ICERM (Providence, Rhode Island), USA

Visit: icerm.brown.edu/topical_workshops/tw-24-qcam/

The Mathematics Newsletter may be downloaded from the RMS website at
www.ramanujanmathsociety.org
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December of  each year. The first issue of  any new volume is published in June.

Mathematics Newsletter welcomes from its readers

 Expository articles in mathematics typed in LaTeX or Microsoft Word;

 Information on forthcoming meetings, seminars, workshops and
conferences in mathematics and reports on those which were recently
concluded;

 Mathematical puzzles and problems addressed to the readership of the
Newsletter ;

 Solutions to mathematical problems that have appeared in the Newsletter and
comments on the solutions;

 Brief reports on the mathematical activities at their departments that might
be of  interest to the readership of  the Newsletter;

 Information about faculty positions and scholarships;

 Abstracts (each not exceeding one page) of  recent Ph.D. theses;

 Descriptions of recently-published books written by them; and

 Any other items that might be of  interest to the mathematical community.

Readers are requested not to submit regular research articles for publication in the
Mathematics Newsletter. The Newsletter is not the forum for such articles. Instead, the
Newsletter looks for expository articles that are consciously written in a style that
would make them accessible to a broad mathematical readership.

- Chief Editor, Mathematics Newsletter
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Details of Workshop/Conferences in India 24

Details of Workshop/Conferences Abroad 25

Visit: www.ramanujanmathsociety.org
Typeset in LATEX at Krishtel eMaging Solutions Pvt. Ltd., Chennai - 600 087. Phone: 2486 13 16 and printed at
United Bind Graphics, Chennai - 600 010. Phone: 9282102533/79692738

www.ramanujanmathsociety.org

	Introduction
	Main Results
	References
	Introduction
	Fatou-Bieberbach domains and the
	Fatou-Bieberbach domains and the
	References
	Plane quasiconformal mappings
	Various classes of domains
	Quasidisks and quasiconformal extension
	Coefficient problems related to
	Grunsky coefficients
	References
	Introduction
	Preliminaries
	Quasiconformal mappings and bold0mu mumu HpHpHpHpHpHp-classes
	Zinsmeister's theorem and its extensions
	Further generalizations
	References

